Neural Gaussian Scale-Space Fields
Gaussian scale spaces are a cornerstone of signal representation and processing, with applications in filtering, multiscale analysis, anti-aliasing, and many more. However, obtaining such a scale space is costly and cumbersome, in particular for continuous representations such as neural fields. We p...
Gespeichert in:
Veröffentlicht in: | ACM transactions on graphics 2024-07, Vol.43 (4), p.1-15, Article 134 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 15 |
---|---|
container_issue | 4 |
container_start_page | 1 |
container_title | ACM transactions on graphics |
container_volume | 43 |
creator | Mujkanovic, Felix Nsampi, Ntumba Elie Theobalt, Christian Seidel, Hans-Peter Leimkühler, Thomas |
description | Gaussian scale spaces are a cornerstone of signal representation and processing, with applications in filtering, multiscale analysis, anti-aliasing, and many more. However, obtaining such a scale space is costly and cumbersome, in particular for continuous representations such as neural fields. We present an efficient and lightweight method to learn the fully continuous, anisotropic Gaussian scale space of an arbitrary signal. Based on Fourier feature modulation and Lipschitz bounding, our approach is trained self-supervised, i.e., training does not require any manual filtering. Our neural Gaussian scale-space fields faithfully capture multiscale representations across a broad range of modalities, and support a diverse set of applications. These include images, geometry, light-stage data, texture anti-aliasing, and multiscale optimization. |
doi_str_mv | 10.1145/3658163 |
format | Article |
fullrecord | <record><control><sourceid>acm_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1145_3658163</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3658163</sourcerecordid><originalsourceid>FETCH-LOGICAL-a169t-59a003420b70ef351e5b4bbafaadecf205b8720a81ced8b6cddfd7823492d4b73</originalsourceid><addsrcrecordid>eNo9j01LAzEURYMoOFZx72pw4yr25TuzlGKrUOqiuh5ekhcYmWpJ7MJ_r9LW1V3cw4HD2LWAeyG0mSprvLDqhDXCGMedsv6UNeAUcFAgztlFre8AYLW2Dbtd0a7g2C5wV-uAH-064kh8vcVI7XygMdVLdpZxrHR12Al7mz--zp748mXxPHtYchS2--KmQwClJQQHlJURZIIOATNiopglmOCdBPQiUvLBxpRycl4q3cmkg1MTdrf3xvJZa6Hcb8uwwfLdC-j_0vpD2i95sycxbv6h4_kDxH9HWQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Neural Gaussian Scale-Space Fields</title><source>ACM Digital Library Complete</source><creator>Mujkanovic, Felix ; Nsampi, Ntumba Elie ; Theobalt, Christian ; Seidel, Hans-Peter ; Leimkühler, Thomas</creator><creatorcontrib>Mujkanovic, Felix ; Nsampi, Ntumba Elie ; Theobalt, Christian ; Seidel, Hans-Peter ; Leimkühler, Thomas</creatorcontrib><description>Gaussian scale spaces are a cornerstone of signal representation and processing, with applications in filtering, multiscale analysis, anti-aliasing, and many more. However, obtaining such a scale space is costly and cumbersome, in particular for continuous representations such as neural fields. We present an efficient and lightweight method to learn the fully continuous, anisotropic Gaussian scale space of an arbitrary signal. Based on Fourier feature modulation and Lipschitz bounding, our approach is trained self-supervised, i.e., training does not require any manual filtering. Our neural Gaussian scale-space fields faithfully capture multiscale representations across a broad range of modalities, and support a diverse set of applications. These include images, geometry, light-stage data, texture anti-aliasing, and multiscale optimization.</description><identifier>ISSN: 0730-0301</identifier><identifier>EISSN: 1557-7368</identifier><identifier>DOI: 10.1145/3658163</identifier><language>eng</language><publisher>New York, NY, USA: ACM</publisher><subject>Computer graphics ; Computing methodologies ; Machine learning ; Machine learning approaches ; Neural networks</subject><ispartof>ACM transactions on graphics, 2024-07, Vol.43 (4), p.1-15, Article 134</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-a169t-59a003420b70ef351e5b4bbafaadecf205b8720a81ced8b6cddfd7823492d4b73</cites><orcidid>0009-0009-9122-4408 ; 0000-0002-3769-9850 ; 0000-0002-1343-8613 ; 0000-0001-6104-6625 ; 0009-0006-7784-7957</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://dl.acm.org/doi/pdf/10.1145/3658163$$EPDF$$P50$$Gacm$$Hfree_for_read</linktopdf><link.rule.ids>314,780,784,2280,27923,27924,40195,75999</link.rule.ids></links><search><creatorcontrib>Mujkanovic, Felix</creatorcontrib><creatorcontrib>Nsampi, Ntumba Elie</creatorcontrib><creatorcontrib>Theobalt, Christian</creatorcontrib><creatorcontrib>Seidel, Hans-Peter</creatorcontrib><creatorcontrib>Leimkühler, Thomas</creatorcontrib><title>Neural Gaussian Scale-Space Fields</title><title>ACM transactions on graphics</title><addtitle>ACM TOG</addtitle><description>Gaussian scale spaces are a cornerstone of signal representation and processing, with applications in filtering, multiscale analysis, anti-aliasing, and many more. However, obtaining such a scale space is costly and cumbersome, in particular for continuous representations such as neural fields. We present an efficient and lightweight method to learn the fully continuous, anisotropic Gaussian scale space of an arbitrary signal. Based on Fourier feature modulation and Lipschitz bounding, our approach is trained self-supervised, i.e., training does not require any manual filtering. Our neural Gaussian scale-space fields faithfully capture multiscale representations across a broad range of modalities, and support a diverse set of applications. These include images, geometry, light-stage data, texture anti-aliasing, and multiscale optimization.</description><subject>Computer graphics</subject><subject>Computing methodologies</subject><subject>Machine learning</subject><subject>Machine learning approaches</subject><subject>Neural networks</subject><issn>0730-0301</issn><issn>1557-7368</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNo9j01LAzEURYMoOFZx72pw4yr25TuzlGKrUOqiuh5ekhcYmWpJ7MJ_r9LW1V3cw4HD2LWAeyG0mSprvLDqhDXCGMedsv6UNeAUcFAgztlFre8AYLW2Dbtd0a7g2C5wV-uAH-064kh8vcVI7XygMdVLdpZxrHR12Al7mz--zp748mXxPHtYchS2--KmQwClJQQHlJURZIIOATNiopglmOCdBPQiUvLBxpRycl4q3cmkg1MTdrf3xvJZa6Hcb8uwwfLdC-j_0vpD2i95sycxbv6h4_kDxH9HWQ</recordid><startdate>20240719</startdate><enddate>20240719</enddate><creator>Mujkanovic, Felix</creator><creator>Nsampi, Ntumba Elie</creator><creator>Theobalt, Christian</creator><creator>Seidel, Hans-Peter</creator><creator>Leimkühler, Thomas</creator><general>ACM</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0009-0009-9122-4408</orcidid><orcidid>https://orcid.org/0000-0002-3769-9850</orcidid><orcidid>https://orcid.org/0000-0002-1343-8613</orcidid><orcidid>https://orcid.org/0000-0001-6104-6625</orcidid><orcidid>https://orcid.org/0009-0006-7784-7957</orcidid></search><sort><creationdate>20240719</creationdate><title>Neural Gaussian Scale-Space Fields</title><author>Mujkanovic, Felix ; Nsampi, Ntumba Elie ; Theobalt, Christian ; Seidel, Hans-Peter ; Leimkühler, Thomas</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a169t-59a003420b70ef351e5b4bbafaadecf205b8720a81ced8b6cddfd7823492d4b73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Computer graphics</topic><topic>Computing methodologies</topic><topic>Machine learning</topic><topic>Machine learning approaches</topic><topic>Neural networks</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mujkanovic, Felix</creatorcontrib><creatorcontrib>Nsampi, Ntumba Elie</creatorcontrib><creatorcontrib>Theobalt, Christian</creatorcontrib><creatorcontrib>Seidel, Hans-Peter</creatorcontrib><creatorcontrib>Leimkühler, Thomas</creatorcontrib><collection>CrossRef</collection><jtitle>ACM transactions on graphics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mujkanovic, Felix</au><au>Nsampi, Ntumba Elie</au><au>Theobalt, Christian</au><au>Seidel, Hans-Peter</au><au>Leimkühler, Thomas</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Neural Gaussian Scale-Space Fields</atitle><jtitle>ACM transactions on graphics</jtitle><stitle>ACM TOG</stitle><date>2024-07-19</date><risdate>2024</risdate><volume>43</volume><issue>4</issue><spage>1</spage><epage>15</epage><pages>1-15</pages><artnum>134</artnum><issn>0730-0301</issn><eissn>1557-7368</eissn><abstract>Gaussian scale spaces are a cornerstone of signal representation and processing, with applications in filtering, multiscale analysis, anti-aliasing, and many more. However, obtaining such a scale space is costly and cumbersome, in particular for continuous representations such as neural fields. We present an efficient and lightweight method to learn the fully continuous, anisotropic Gaussian scale space of an arbitrary signal. Based on Fourier feature modulation and Lipschitz bounding, our approach is trained self-supervised, i.e., training does not require any manual filtering. Our neural Gaussian scale-space fields faithfully capture multiscale representations across a broad range of modalities, and support a diverse set of applications. These include images, geometry, light-stage data, texture anti-aliasing, and multiscale optimization.</abstract><cop>New York, NY, USA</cop><pub>ACM</pub><doi>10.1145/3658163</doi><tpages>15</tpages><orcidid>https://orcid.org/0009-0009-9122-4408</orcidid><orcidid>https://orcid.org/0000-0002-3769-9850</orcidid><orcidid>https://orcid.org/0000-0002-1343-8613</orcidid><orcidid>https://orcid.org/0000-0001-6104-6625</orcidid><orcidid>https://orcid.org/0009-0006-7784-7957</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0730-0301 |
ispartof | ACM transactions on graphics, 2024-07, Vol.43 (4), p.1-15, Article 134 |
issn | 0730-0301 1557-7368 |
language | eng |
recordid | cdi_crossref_primary_10_1145_3658163 |
source | ACM Digital Library Complete |
subjects | Computer graphics Computing methodologies Machine learning Machine learning approaches Neural networks |
title | Neural Gaussian Scale-Space Fields |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T13%3A52%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-acm_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Neural%20Gaussian%20Scale-Space%20Fields&rft.jtitle=ACM%20transactions%20on%20graphics&rft.au=Mujkanovic,%20Felix&rft.date=2024-07-19&rft.volume=43&rft.issue=4&rft.spage=1&rft.epage=15&rft.pages=1-15&rft.artnum=134&rft.issn=0730-0301&rft.eissn=1557-7368&rft_id=info:doi/10.1145/3658163&rft_dat=%3Cacm_cross%3E3658163%3C/acm_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |