Neural Gaussian Scale-Space Fields

Gaussian scale spaces are a cornerstone of signal representation and processing, with applications in filtering, multiscale analysis, anti-aliasing, and many more. However, obtaining such a scale space is costly and cumbersome, in particular for continuous representations such as neural fields. We p...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACM transactions on graphics 2024-07, Vol.43 (4), p.1-15, Article 134
Hauptverfasser: Mujkanovic, Felix, Nsampi, Ntumba Elie, Theobalt, Christian, Seidel, Hans-Peter, Leimkühler, Thomas
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 15
container_issue 4
container_start_page 1
container_title ACM transactions on graphics
container_volume 43
creator Mujkanovic, Felix
Nsampi, Ntumba Elie
Theobalt, Christian
Seidel, Hans-Peter
Leimkühler, Thomas
description Gaussian scale spaces are a cornerstone of signal representation and processing, with applications in filtering, multiscale analysis, anti-aliasing, and many more. However, obtaining such a scale space is costly and cumbersome, in particular for continuous representations such as neural fields. We present an efficient and lightweight method to learn the fully continuous, anisotropic Gaussian scale space of an arbitrary signal. Based on Fourier feature modulation and Lipschitz bounding, our approach is trained self-supervised, i.e., training does not require any manual filtering. Our neural Gaussian scale-space fields faithfully capture multiscale representations across a broad range of modalities, and support a diverse set of applications. These include images, geometry, light-stage data, texture anti-aliasing, and multiscale optimization.
doi_str_mv 10.1145/3658163
format Article
fullrecord <record><control><sourceid>acm_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1145_3658163</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3658163</sourcerecordid><originalsourceid>FETCH-LOGICAL-a169t-59a003420b70ef351e5b4bbafaadecf205b8720a81ced8b6cddfd7823492d4b73</originalsourceid><addsrcrecordid>eNo9j01LAzEURYMoOFZx72pw4yr25TuzlGKrUOqiuh5ekhcYmWpJ7MJ_r9LW1V3cw4HD2LWAeyG0mSprvLDqhDXCGMedsv6UNeAUcFAgztlFre8AYLW2Dbtd0a7g2C5wV-uAH-064kh8vcVI7XygMdVLdpZxrHR12Al7mz--zp748mXxPHtYchS2--KmQwClJQQHlJURZIIOATNiopglmOCdBPQiUvLBxpRycl4q3cmkg1MTdrf3xvJZa6Hcb8uwwfLdC-j_0vpD2i95sycxbv6h4_kDxH9HWQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Neural Gaussian Scale-Space Fields</title><source>ACM Digital Library Complete</source><creator>Mujkanovic, Felix ; Nsampi, Ntumba Elie ; Theobalt, Christian ; Seidel, Hans-Peter ; Leimkühler, Thomas</creator><creatorcontrib>Mujkanovic, Felix ; Nsampi, Ntumba Elie ; Theobalt, Christian ; Seidel, Hans-Peter ; Leimkühler, Thomas</creatorcontrib><description>Gaussian scale spaces are a cornerstone of signal representation and processing, with applications in filtering, multiscale analysis, anti-aliasing, and many more. However, obtaining such a scale space is costly and cumbersome, in particular for continuous representations such as neural fields. We present an efficient and lightweight method to learn the fully continuous, anisotropic Gaussian scale space of an arbitrary signal. Based on Fourier feature modulation and Lipschitz bounding, our approach is trained self-supervised, i.e., training does not require any manual filtering. Our neural Gaussian scale-space fields faithfully capture multiscale representations across a broad range of modalities, and support a diverse set of applications. These include images, geometry, light-stage data, texture anti-aliasing, and multiscale optimization.</description><identifier>ISSN: 0730-0301</identifier><identifier>EISSN: 1557-7368</identifier><identifier>DOI: 10.1145/3658163</identifier><language>eng</language><publisher>New York, NY, USA: ACM</publisher><subject>Computer graphics ; Computing methodologies ; Machine learning ; Machine learning approaches ; Neural networks</subject><ispartof>ACM transactions on graphics, 2024-07, Vol.43 (4), p.1-15, Article 134</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-a169t-59a003420b70ef351e5b4bbafaadecf205b8720a81ced8b6cddfd7823492d4b73</cites><orcidid>0009-0009-9122-4408 ; 0000-0002-3769-9850 ; 0000-0002-1343-8613 ; 0000-0001-6104-6625 ; 0009-0006-7784-7957</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://dl.acm.org/doi/pdf/10.1145/3658163$$EPDF$$P50$$Gacm$$Hfree_for_read</linktopdf><link.rule.ids>314,780,784,2280,27923,27924,40195,75999</link.rule.ids></links><search><creatorcontrib>Mujkanovic, Felix</creatorcontrib><creatorcontrib>Nsampi, Ntumba Elie</creatorcontrib><creatorcontrib>Theobalt, Christian</creatorcontrib><creatorcontrib>Seidel, Hans-Peter</creatorcontrib><creatorcontrib>Leimkühler, Thomas</creatorcontrib><title>Neural Gaussian Scale-Space Fields</title><title>ACM transactions on graphics</title><addtitle>ACM TOG</addtitle><description>Gaussian scale spaces are a cornerstone of signal representation and processing, with applications in filtering, multiscale analysis, anti-aliasing, and many more. However, obtaining such a scale space is costly and cumbersome, in particular for continuous representations such as neural fields. We present an efficient and lightweight method to learn the fully continuous, anisotropic Gaussian scale space of an arbitrary signal. Based on Fourier feature modulation and Lipschitz bounding, our approach is trained self-supervised, i.e., training does not require any manual filtering. Our neural Gaussian scale-space fields faithfully capture multiscale representations across a broad range of modalities, and support a diverse set of applications. These include images, geometry, light-stage data, texture anti-aliasing, and multiscale optimization.</description><subject>Computer graphics</subject><subject>Computing methodologies</subject><subject>Machine learning</subject><subject>Machine learning approaches</subject><subject>Neural networks</subject><issn>0730-0301</issn><issn>1557-7368</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNo9j01LAzEURYMoOFZx72pw4yr25TuzlGKrUOqiuh5ekhcYmWpJ7MJ_r9LW1V3cw4HD2LWAeyG0mSprvLDqhDXCGMedsv6UNeAUcFAgztlFre8AYLW2Dbtd0a7g2C5wV-uAH-064kh8vcVI7XygMdVLdpZxrHR12Al7mz--zp748mXxPHtYchS2--KmQwClJQQHlJURZIIOATNiopglmOCdBPQiUvLBxpRycl4q3cmkg1MTdrf3xvJZa6Hcb8uwwfLdC-j_0vpD2i95sycxbv6h4_kDxH9HWQ</recordid><startdate>20240719</startdate><enddate>20240719</enddate><creator>Mujkanovic, Felix</creator><creator>Nsampi, Ntumba Elie</creator><creator>Theobalt, Christian</creator><creator>Seidel, Hans-Peter</creator><creator>Leimkühler, Thomas</creator><general>ACM</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0009-0009-9122-4408</orcidid><orcidid>https://orcid.org/0000-0002-3769-9850</orcidid><orcidid>https://orcid.org/0000-0002-1343-8613</orcidid><orcidid>https://orcid.org/0000-0001-6104-6625</orcidid><orcidid>https://orcid.org/0009-0006-7784-7957</orcidid></search><sort><creationdate>20240719</creationdate><title>Neural Gaussian Scale-Space Fields</title><author>Mujkanovic, Felix ; Nsampi, Ntumba Elie ; Theobalt, Christian ; Seidel, Hans-Peter ; Leimkühler, Thomas</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a169t-59a003420b70ef351e5b4bbafaadecf205b8720a81ced8b6cddfd7823492d4b73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Computer graphics</topic><topic>Computing methodologies</topic><topic>Machine learning</topic><topic>Machine learning approaches</topic><topic>Neural networks</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mujkanovic, Felix</creatorcontrib><creatorcontrib>Nsampi, Ntumba Elie</creatorcontrib><creatorcontrib>Theobalt, Christian</creatorcontrib><creatorcontrib>Seidel, Hans-Peter</creatorcontrib><creatorcontrib>Leimkühler, Thomas</creatorcontrib><collection>CrossRef</collection><jtitle>ACM transactions on graphics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mujkanovic, Felix</au><au>Nsampi, Ntumba Elie</au><au>Theobalt, Christian</au><au>Seidel, Hans-Peter</au><au>Leimkühler, Thomas</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Neural Gaussian Scale-Space Fields</atitle><jtitle>ACM transactions on graphics</jtitle><stitle>ACM TOG</stitle><date>2024-07-19</date><risdate>2024</risdate><volume>43</volume><issue>4</issue><spage>1</spage><epage>15</epage><pages>1-15</pages><artnum>134</artnum><issn>0730-0301</issn><eissn>1557-7368</eissn><abstract>Gaussian scale spaces are a cornerstone of signal representation and processing, with applications in filtering, multiscale analysis, anti-aliasing, and many more. However, obtaining such a scale space is costly and cumbersome, in particular for continuous representations such as neural fields. We present an efficient and lightweight method to learn the fully continuous, anisotropic Gaussian scale space of an arbitrary signal. Based on Fourier feature modulation and Lipschitz bounding, our approach is trained self-supervised, i.e., training does not require any manual filtering. Our neural Gaussian scale-space fields faithfully capture multiscale representations across a broad range of modalities, and support a diverse set of applications. These include images, geometry, light-stage data, texture anti-aliasing, and multiscale optimization.</abstract><cop>New York, NY, USA</cop><pub>ACM</pub><doi>10.1145/3658163</doi><tpages>15</tpages><orcidid>https://orcid.org/0009-0009-9122-4408</orcidid><orcidid>https://orcid.org/0000-0002-3769-9850</orcidid><orcidid>https://orcid.org/0000-0002-1343-8613</orcidid><orcidid>https://orcid.org/0000-0001-6104-6625</orcidid><orcidid>https://orcid.org/0009-0006-7784-7957</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0730-0301
ispartof ACM transactions on graphics, 2024-07, Vol.43 (4), p.1-15, Article 134
issn 0730-0301
1557-7368
language eng
recordid cdi_crossref_primary_10_1145_3658163
source ACM Digital Library Complete
subjects Computer graphics
Computing methodologies
Machine learning
Machine learning approaches
Neural networks
title Neural Gaussian Scale-Space Fields
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T13%3A52%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-acm_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Neural%20Gaussian%20Scale-Space%20Fields&rft.jtitle=ACM%20transactions%20on%20graphics&rft.au=Mujkanovic,%20Felix&rft.date=2024-07-19&rft.volume=43&rft.issue=4&rft.spage=1&rft.epage=15&rft.pages=1-15&rft.artnum=134&rft.issn=0730-0301&rft.eissn=1557-7368&rft_id=info:doi/10.1145/3658163&rft_dat=%3Cacm_cross%3E3658163%3C/acm_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true