Interactive Character Control with Auto-Regressive Motion Diffusion Models

Real-time character control is an essential component for interactive experiences, with a broad range of applications, including physics simulations, video games, and virtual reality. The success of diffusion models for image synthesis has led to the use of these models for motion synthesis. However...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACM transactions on graphics 2024-07, Vol.43 (4), p.1-14, Article 143
Hauptverfasser: Shi, Yi, Wang, Jingbo, Jiang, Xuekun, Lin, Bingkun, Dai, Bo, Peng, Xue Bin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 14
container_issue 4
container_start_page 1
container_title ACM transactions on graphics
container_volume 43
creator Shi, Yi
Wang, Jingbo
Jiang, Xuekun
Lin, Bingkun
Dai, Bo
Peng, Xue Bin
description Real-time character control is an essential component for interactive experiences, with a broad range of applications, including physics simulations, video games, and virtual reality. The success of diffusion models for image synthesis has led to the use of these models for motion synthesis. However, the majority of these motion diffusion models are primarily designed for offline applications, where space-time models are used to synthesize an entire sequence of frames simultaneously with a pre-specified length. To enable real-time motion synthesis with diffusion model that allows time-varying controls, we propose A-MDM (Auto-regressive Motion Diffusion Model). Our conditional diffusion model takes an initial pose as input, and auto-regressively generates successive motion frames conditioned on the previous frame. Despite its streamlined network architecture, which uses simple MLPs, our framework is capable of generating diverse, long-horizon, and high-fidelity motion sequences. Furthermore, we introduce a suite of techniques for incorporating interactive controls into A-MDM, such as task-oriented sampling, in-painting, and hierarchical reinforcement learning (See Figure 1). These techniques enable a pre-trained A-MDM to be efficiently adapted for a variety of new downstream tasks. We conduct a comprehensive suite of experiments to demonstrate the effectiveness of A-MDM, and compare its performance against state-of-the-art auto-regressive methods.
doi_str_mv 10.1145/3658140
format Article
fullrecord <record><control><sourceid>acm_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1145_3658140</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3658140</sourcerecordid><originalsourceid>FETCH-LOGICAL-a169t-ee3e38f8c64ebfbca683d6cc8d8c582ee43335497d25ea3de2fe6bbd7c41e3233</originalsourceid><addsrcrecordid>eNo9kE1LAzEURYMoOFZx72p2rqLJvCSTLsv4VWkRRNdDJnmxI9NGklTx3-vQ6uoeuIe7uIScc3bFuZDXoKTmgh2QgktZ0xqUPiQFq4FRBowfk5OU3hljSghVkMf5JmM0NvefWDYrMyLGsgmbHMNQfvV5Vc62OdBnfIuY0qgtQ-7Dprzpvd-mkZbB4ZBOyZE3Q8KzfU7I693tS_NAF0_382a2oIaraaaIgKC9tkpg5ztrlAanrNVOW6krRAEAUkxrV0k04LDyqLrO1VZwhApgQi53uzaGlCL69iP2axO_W87a8YJ2f8GvebEzjV3_S3_lD4dgV18</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Interactive Character Control with Auto-Regressive Motion Diffusion Models</title><source>ACM Digital Library</source><creator>Shi, Yi ; Wang, Jingbo ; Jiang, Xuekun ; Lin, Bingkun ; Dai, Bo ; Peng, Xue Bin</creator><creatorcontrib>Shi, Yi ; Wang, Jingbo ; Jiang, Xuekun ; Lin, Bingkun ; Dai, Bo ; Peng, Xue Bin</creatorcontrib><description>Real-time character control is an essential component for interactive experiences, with a broad range of applications, including physics simulations, video games, and virtual reality. The success of diffusion models for image synthesis has led to the use of these models for motion synthesis. However, the majority of these motion diffusion models are primarily designed for offline applications, where space-time models are used to synthesize an entire sequence of frames simultaneously with a pre-specified length. To enable real-time motion synthesis with diffusion model that allows time-varying controls, we propose A-MDM (Auto-regressive Motion Diffusion Model). Our conditional diffusion model takes an initial pose as input, and auto-regressively generates successive motion frames conditioned on the previous frame. Despite its streamlined network architecture, which uses simple MLPs, our framework is capable of generating diverse, long-horizon, and high-fidelity motion sequences. Furthermore, we introduce a suite of techniques for incorporating interactive controls into A-MDM, such as task-oriented sampling, in-painting, and hierarchical reinforcement learning (See Figure 1). These techniques enable a pre-trained A-MDM to be efficiently adapted for a variety of new downstream tasks. We conduct a comprehensive suite of experiments to demonstrate the effectiveness of A-MDM, and compare its performance against state-of-the-art auto-regressive methods.</description><identifier>ISSN: 0730-0301</identifier><identifier>EISSN: 1557-7368</identifier><identifier>DOI: 10.1145/3658140</identifier><language>eng</language><publisher>New York, NY, USA: ACM</publisher><subject>Animation ; Computer graphics ; Computing methodologies ; Motion processing</subject><ispartof>ACM transactions on graphics, 2024-07, Vol.43 (4), p.1-14, Article 143</ispartof><rights>Copyright is held by the owner/author(s). Publication rights licensed to ACM.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-a169t-ee3e38f8c64ebfbca683d6cc8d8c582ee43335497d25ea3de2fe6bbd7c41e3233</cites><orcidid>0009-0005-0740-8548 ; 0009-0001-2546-0885 ; 0000-0002-3677-5655 ; 0000-0003-0777-9232 ; 0009-0008-3916-0550 ; 0000-0003-3360-6706</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://dl.acm.org/doi/pdf/10.1145/3658140$$EPDF$$P50$$Gacm$$H</linktopdf><link.rule.ids>314,777,781,2276,27905,27906,40177,75977</link.rule.ids></links><search><creatorcontrib>Shi, Yi</creatorcontrib><creatorcontrib>Wang, Jingbo</creatorcontrib><creatorcontrib>Jiang, Xuekun</creatorcontrib><creatorcontrib>Lin, Bingkun</creatorcontrib><creatorcontrib>Dai, Bo</creatorcontrib><creatorcontrib>Peng, Xue Bin</creatorcontrib><title>Interactive Character Control with Auto-Regressive Motion Diffusion Models</title><title>ACM transactions on graphics</title><addtitle>ACM TOG</addtitle><description>Real-time character control is an essential component for interactive experiences, with a broad range of applications, including physics simulations, video games, and virtual reality. The success of diffusion models for image synthesis has led to the use of these models for motion synthesis. However, the majority of these motion diffusion models are primarily designed for offline applications, where space-time models are used to synthesize an entire sequence of frames simultaneously with a pre-specified length. To enable real-time motion synthesis with diffusion model that allows time-varying controls, we propose A-MDM (Auto-regressive Motion Diffusion Model). Our conditional diffusion model takes an initial pose as input, and auto-regressively generates successive motion frames conditioned on the previous frame. Despite its streamlined network architecture, which uses simple MLPs, our framework is capable of generating diverse, long-horizon, and high-fidelity motion sequences. Furthermore, we introduce a suite of techniques for incorporating interactive controls into A-MDM, such as task-oriented sampling, in-painting, and hierarchical reinforcement learning (See Figure 1). These techniques enable a pre-trained A-MDM to be efficiently adapted for a variety of new downstream tasks. We conduct a comprehensive suite of experiments to demonstrate the effectiveness of A-MDM, and compare its performance against state-of-the-art auto-regressive methods.</description><subject>Animation</subject><subject>Computer graphics</subject><subject>Computing methodologies</subject><subject>Motion processing</subject><issn>0730-0301</issn><issn>1557-7368</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNo9kE1LAzEURYMoOFZx72p2rqLJvCSTLsv4VWkRRNdDJnmxI9NGklTx3-vQ6uoeuIe7uIScc3bFuZDXoKTmgh2QgktZ0xqUPiQFq4FRBowfk5OU3hljSghVkMf5JmM0NvefWDYrMyLGsgmbHMNQfvV5Vc62OdBnfIuY0qgtQ-7Dprzpvd-mkZbB4ZBOyZE3Q8KzfU7I693tS_NAF0_382a2oIaraaaIgKC9tkpg5ztrlAanrNVOW6krRAEAUkxrV0k04LDyqLrO1VZwhApgQi53uzaGlCL69iP2axO_W87a8YJ2f8GvebEzjV3_S3_lD4dgV18</recordid><startdate>20240719</startdate><enddate>20240719</enddate><creator>Shi, Yi</creator><creator>Wang, Jingbo</creator><creator>Jiang, Xuekun</creator><creator>Lin, Bingkun</creator><creator>Dai, Bo</creator><creator>Peng, Xue Bin</creator><general>ACM</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0009-0005-0740-8548</orcidid><orcidid>https://orcid.org/0009-0001-2546-0885</orcidid><orcidid>https://orcid.org/0000-0002-3677-5655</orcidid><orcidid>https://orcid.org/0000-0003-0777-9232</orcidid><orcidid>https://orcid.org/0009-0008-3916-0550</orcidid><orcidid>https://orcid.org/0000-0003-3360-6706</orcidid></search><sort><creationdate>20240719</creationdate><title>Interactive Character Control with Auto-Regressive Motion Diffusion Models</title><author>Shi, Yi ; Wang, Jingbo ; Jiang, Xuekun ; Lin, Bingkun ; Dai, Bo ; Peng, Xue Bin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a169t-ee3e38f8c64ebfbca683d6cc8d8c582ee43335497d25ea3de2fe6bbd7c41e3233</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Animation</topic><topic>Computer graphics</topic><topic>Computing methodologies</topic><topic>Motion processing</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shi, Yi</creatorcontrib><creatorcontrib>Wang, Jingbo</creatorcontrib><creatorcontrib>Jiang, Xuekun</creatorcontrib><creatorcontrib>Lin, Bingkun</creatorcontrib><creatorcontrib>Dai, Bo</creatorcontrib><creatorcontrib>Peng, Xue Bin</creatorcontrib><collection>CrossRef</collection><jtitle>ACM transactions on graphics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Shi, Yi</au><au>Wang, Jingbo</au><au>Jiang, Xuekun</au><au>Lin, Bingkun</au><au>Dai, Bo</au><au>Peng, Xue Bin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Interactive Character Control with Auto-Regressive Motion Diffusion Models</atitle><jtitle>ACM transactions on graphics</jtitle><stitle>ACM TOG</stitle><date>2024-07-19</date><risdate>2024</risdate><volume>43</volume><issue>4</issue><spage>1</spage><epage>14</epage><pages>1-14</pages><artnum>143</artnum><issn>0730-0301</issn><eissn>1557-7368</eissn><abstract>Real-time character control is an essential component for interactive experiences, with a broad range of applications, including physics simulations, video games, and virtual reality. The success of diffusion models for image synthesis has led to the use of these models for motion synthesis. However, the majority of these motion diffusion models are primarily designed for offline applications, where space-time models are used to synthesize an entire sequence of frames simultaneously with a pre-specified length. To enable real-time motion synthesis with diffusion model that allows time-varying controls, we propose A-MDM (Auto-regressive Motion Diffusion Model). Our conditional diffusion model takes an initial pose as input, and auto-regressively generates successive motion frames conditioned on the previous frame. Despite its streamlined network architecture, which uses simple MLPs, our framework is capable of generating diverse, long-horizon, and high-fidelity motion sequences. Furthermore, we introduce a suite of techniques for incorporating interactive controls into A-MDM, such as task-oriented sampling, in-painting, and hierarchical reinforcement learning (See Figure 1). These techniques enable a pre-trained A-MDM to be efficiently adapted for a variety of new downstream tasks. We conduct a comprehensive suite of experiments to demonstrate the effectiveness of A-MDM, and compare its performance against state-of-the-art auto-regressive methods.</abstract><cop>New York, NY, USA</cop><pub>ACM</pub><doi>10.1145/3658140</doi><tpages>14</tpages><orcidid>https://orcid.org/0009-0005-0740-8548</orcidid><orcidid>https://orcid.org/0009-0001-2546-0885</orcidid><orcidid>https://orcid.org/0000-0002-3677-5655</orcidid><orcidid>https://orcid.org/0000-0003-0777-9232</orcidid><orcidid>https://orcid.org/0009-0008-3916-0550</orcidid><orcidid>https://orcid.org/0000-0003-3360-6706</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0730-0301
ispartof ACM transactions on graphics, 2024-07, Vol.43 (4), p.1-14, Article 143
issn 0730-0301
1557-7368
language eng
recordid cdi_crossref_primary_10_1145_3658140
source ACM Digital Library
subjects Animation
Computer graphics
Computing methodologies
Motion processing
title Interactive Character Control with Auto-Regressive Motion Diffusion Models
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T09%3A09%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-acm_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Interactive%20Character%20Control%20with%20Auto-Regressive%20Motion%20Diffusion%20Models&rft.jtitle=ACM%20transactions%20on%20graphics&rft.au=Shi,%20Yi&rft.date=2024-07-19&rft.volume=43&rft.issue=4&rft.spage=1&rft.epage=14&rft.pages=1-14&rft.artnum=143&rft.issn=0730-0301&rft.eissn=1557-7368&rft_id=info:doi/10.1145/3658140&rft_dat=%3Cacm_cross%3E3658140%3C/acm_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true