Interactive Character Control with Auto-Regressive Motion Diffusion Models
Real-time character control is an essential component for interactive experiences, with a broad range of applications, including physics simulations, video games, and virtual reality. The success of diffusion models for image synthesis has led to the use of these models for motion synthesis. However...
Gespeichert in:
Veröffentlicht in: | ACM transactions on graphics 2024-07, Vol.43 (4), p.1-14, Article 143 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 14 |
---|---|
container_issue | 4 |
container_start_page | 1 |
container_title | ACM transactions on graphics |
container_volume | 43 |
creator | Shi, Yi Wang, Jingbo Jiang, Xuekun Lin, Bingkun Dai, Bo Peng, Xue Bin |
description | Real-time character control is an essential component for interactive experiences, with a broad range of applications, including physics simulations, video games, and virtual reality. The success of diffusion models for image synthesis has led to the use of these models for motion synthesis. However, the majority of these motion diffusion models are primarily designed for offline applications, where space-time models are used to synthesize an entire sequence of frames simultaneously with a pre-specified length. To enable real-time motion synthesis with diffusion model that allows time-varying controls, we propose A-MDM (Auto-regressive Motion Diffusion Model). Our conditional diffusion model takes an initial pose as input, and auto-regressively generates successive motion frames conditioned on the previous frame. Despite its streamlined network architecture, which uses simple MLPs, our framework is capable of generating diverse, long-horizon, and high-fidelity motion sequences. Furthermore, we introduce a suite of techniques for incorporating interactive controls into A-MDM, such as task-oriented sampling, in-painting, and hierarchical reinforcement learning (See Figure 1). These techniques enable a pre-trained A-MDM to be efficiently adapted for a variety of new downstream tasks. We conduct a comprehensive suite of experiments to demonstrate the effectiveness of A-MDM, and compare its performance against state-of-the-art auto-regressive methods. |
doi_str_mv | 10.1145/3658140 |
format | Article |
fullrecord | <record><control><sourceid>acm_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1145_3658140</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3658140</sourcerecordid><originalsourceid>FETCH-LOGICAL-a169t-ee3e38f8c64ebfbca683d6cc8d8c582ee43335497d25ea3de2fe6bbd7c41e3233</originalsourceid><addsrcrecordid>eNo9kE1LAzEURYMoOFZx72p2rqLJvCSTLsv4VWkRRNdDJnmxI9NGklTx3-vQ6uoeuIe7uIScc3bFuZDXoKTmgh2QgktZ0xqUPiQFq4FRBowfk5OU3hljSghVkMf5JmM0NvefWDYrMyLGsgmbHMNQfvV5Vc62OdBnfIuY0qgtQ-7Dprzpvd-mkZbB4ZBOyZE3Q8KzfU7I693tS_NAF0_382a2oIaraaaIgKC9tkpg5ztrlAanrNVOW6krRAEAUkxrV0k04LDyqLrO1VZwhApgQi53uzaGlCL69iP2axO_W87a8YJ2f8GvebEzjV3_S3_lD4dgV18</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Interactive Character Control with Auto-Regressive Motion Diffusion Models</title><source>ACM Digital Library</source><creator>Shi, Yi ; Wang, Jingbo ; Jiang, Xuekun ; Lin, Bingkun ; Dai, Bo ; Peng, Xue Bin</creator><creatorcontrib>Shi, Yi ; Wang, Jingbo ; Jiang, Xuekun ; Lin, Bingkun ; Dai, Bo ; Peng, Xue Bin</creatorcontrib><description>Real-time character control is an essential component for interactive experiences, with a broad range of applications, including physics simulations, video games, and virtual reality. The success of diffusion models for image synthesis has led to the use of these models for motion synthesis. However, the majority of these motion diffusion models are primarily designed for offline applications, where space-time models are used to synthesize an entire sequence of frames simultaneously with a pre-specified length. To enable real-time motion synthesis with diffusion model that allows time-varying controls, we propose A-MDM (Auto-regressive Motion Diffusion Model). Our conditional diffusion model takes an initial pose as input, and auto-regressively generates successive motion frames conditioned on the previous frame. Despite its streamlined network architecture, which uses simple MLPs, our framework is capable of generating diverse, long-horizon, and high-fidelity motion sequences. Furthermore, we introduce a suite of techniques for incorporating interactive controls into A-MDM, such as task-oriented sampling, in-painting, and hierarchical reinforcement learning (See Figure 1). These techniques enable a pre-trained A-MDM to be efficiently adapted for a variety of new downstream tasks. We conduct a comprehensive suite of experiments to demonstrate the effectiveness of A-MDM, and compare its performance against state-of-the-art auto-regressive methods.</description><identifier>ISSN: 0730-0301</identifier><identifier>EISSN: 1557-7368</identifier><identifier>DOI: 10.1145/3658140</identifier><language>eng</language><publisher>New York, NY, USA: ACM</publisher><subject>Animation ; Computer graphics ; Computing methodologies ; Motion processing</subject><ispartof>ACM transactions on graphics, 2024-07, Vol.43 (4), p.1-14, Article 143</ispartof><rights>Copyright is held by the owner/author(s). Publication rights licensed to ACM.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-a169t-ee3e38f8c64ebfbca683d6cc8d8c582ee43335497d25ea3de2fe6bbd7c41e3233</cites><orcidid>0009-0005-0740-8548 ; 0009-0001-2546-0885 ; 0000-0002-3677-5655 ; 0000-0003-0777-9232 ; 0009-0008-3916-0550 ; 0000-0003-3360-6706</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://dl.acm.org/doi/pdf/10.1145/3658140$$EPDF$$P50$$Gacm$$H</linktopdf><link.rule.ids>314,777,781,2276,27905,27906,40177,75977</link.rule.ids></links><search><creatorcontrib>Shi, Yi</creatorcontrib><creatorcontrib>Wang, Jingbo</creatorcontrib><creatorcontrib>Jiang, Xuekun</creatorcontrib><creatorcontrib>Lin, Bingkun</creatorcontrib><creatorcontrib>Dai, Bo</creatorcontrib><creatorcontrib>Peng, Xue Bin</creatorcontrib><title>Interactive Character Control with Auto-Regressive Motion Diffusion Models</title><title>ACM transactions on graphics</title><addtitle>ACM TOG</addtitle><description>Real-time character control is an essential component for interactive experiences, with a broad range of applications, including physics simulations, video games, and virtual reality. The success of diffusion models for image synthesis has led to the use of these models for motion synthesis. However, the majority of these motion diffusion models are primarily designed for offline applications, where space-time models are used to synthesize an entire sequence of frames simultaneously with a pre-specified length. To enable real-time motion synthesis with diffusion model that allows time-varying controls, we propose A-MDM (Auto-regressive Motion Diffusion Model). Our conditional diffusion model takes an initial pose as input, and auto-regressively generates successive motion frames conditioned on the previous frame. Despite its streamlined network architecture, which uses simple MLPs, our framework is capable of generating diverse, long-horizon, and high-fidelity motion sequences. Furthermore, we introduce a suite of techniques for incorporating interactive controls into A-MDM, such as task-oriented sampling, in-painting, and hierarchical reinforcement learning (See Figure 1). These techniques enable a pre-trained A-MDM to be efficiently adapted for a variety of new downstream tasks. We conduct a comprehensive suite of experiments to demonstrate the effectiveness of A-MDM, and compare its performance against state-of-the-art auto-regressive methods.</description><subject>Animation</subject><subject>Computer graphics</subject><subject>Computing methodologies</subject><subject>Motion processing</subject><issn>0730-0301</issn><issn>1557-7368</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNo9kE1LAzEURYMoOFZx72p2rqLJvCSTLsv4VWkRRNdDJnmxI9NGklTx3-vQ6uoeuIe7uIScc3bFuZDXoKTmgh2QgktZ0xqUPiQFq4FRBowfk5OU3hljSghVkMf5JmM0NvefWDYrMyLGsgmbHMNQfvV5Vc62OdBnfIuY0qgtQ-7Dprzpvd-mkZbB4ZBOyZE3Q8KzfU7I693tS_NAF0_382a2oIaraaaIgKC9tkpg5ztrlAanrNVOW6krRAEAUkxrV0k04LDyqLrO1VZwhApgQi53uzaGlCL69iP2axO_W87a8YJ2f8GvebEzjV3_S3_lD4dgV18</recordid><startdate>20240719</startdate><enddate>20240719</enddate><creator>Shi, Yi</creator><creator>Wang, Jingbo</creator><creator>Jiang, Xuekun</creator><creator>Lin, Bingkun</creator><creator>Dai, Bo</creator><creator>Peng, Xue Bin</creator><general>ACM</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0009-0005-0740-8548</orcidid><orcidid>https://orcid.org/0009-0001-2546-0885</orcidid><orcidid>https://orcid.org/0000-0002-3677-5655</orcidid><orcidid>https://orcid.org/0000-0003-0777-9232</orcidid><orcidid>https://orcid.org/0009-0008-3916-0550</orcidid><orcidid>https://orcid.org/0000-0003-3360-6706</orcidid></search><sort><creationdate>20240719</creationdate><title>Interactive Character Control with Auto-Regressive Motion Diffusion Models</title><author>Shi, Yi ; Wang, Jingbo ; Jiang, Xuekun ; Lin, Bingkun ; Dai, Bo ; Peng, Xue Bin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a169t-ee3e38f8c64ebfbca683d6cc8d8c582ee43335497d25ea3de2fe6bbd7c41e3233</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Animation</topic><topic>Computer graphics</topic><topic>Computing methodologies</topic><topic>Motion processing</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shi, Yi</creatorcontrib><creatorcontrib>Wang, Jingbo</creatorcontrib><creatorcontrib>Jiang, Xuekun</creatorcontrib><creatorcontrib>Lin, Bingkun</creatorcontrib><creatorcontrib>Dai, Bo</creatorcontrib><creatorcontrib>Peng, Xue Bin</creatorcontrib><collection>CrossRef</collection><jtitle>ACM transactions on graphics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Shi, Yi</au><au>Wang, Jingbo</au><au>Jiang, Xuekun</au><au>Lin, Bingkun</au><au>Dai, Bo</au><au>Peng, Xue Bin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Interactive Character Control with Auto-Regressive Motion Diffusion Models</atitle><jtitle>ACM transactions on graphics</jtitle><stitle>ACM TOG</stitle><date>2024-07-19</date><risdate>2024</risdate><volume>43</volume><issue>4</issue><spage>1</spage><epage>14</epage><pages>1-14</pages><artnum>143</artnum><issn>0730-0301</issn><eissn>1557-7368</eissn><abstract>Real-time character control is an essential component for interactive experiences, with a broad range of applications, including physics simulations, video games, and virtual reality. The success of diffusion models for image synthesis has led to the use of these models for motion synthesis. However, the majority of these motion diffusion models are primarily designed for offline applications, where space-time models are used to synthesize an entire sequence of frames simultaneously with a pre-specified length. To enable real-time motion synthesis with diffusion model that allows time-varying controls, we propose A-MDM (Auto-regressive Motion Diffusion Model). Our conditional diffusion model takes an initial pose as input, and auto-regressively generates successive motion frames conditioned on the previous frame. Despite its streamlined network architecture, which uses simple MLPs, our framework is capable of generating diverse, long-horizon, and high-fidelity motion sequences. Furthermore, we introduce a suite of techniques for incorporating interactive controls into A-MDM, such as task-oriented sampling, in-painting, and hierarchical reinforcement learning (See Figure 1). These techniques enable a pre-trained A-MDM to be efficiently adapted for a variety of new downstream tasks. We conduct a comprehensive suite of experiments to demonstrate the effectiveness of A-MDM, and compare its performance against state-of-the-art auto-regressive methods.</abstract><cop>New York, NY, USA</cop><pub>ACM</pub><doi>10.1145/3658140</doi><tpages>14</tpages><orcidid>https://orcid.org/0009-0005-0740-8548</orcidid><orcidid>https://orcid.org/0009-0001-2546-0885</orcidid><orcidid>https://orcid.org/0000-0002-3677-5655</orcidid><orcidid>https://orcid.org/0000-0003-0777-9232</orcidid><orcidid>https://orcid.org/0009-0008-3916-0550</orcidid><orcidid>https://orcid.org/0000-0003-3360-6706</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0730-0301 |
ispartof | ACM transactions on graphics, 2024-07, Vol.43 (4), p.1-14, Article 143 |
issn | 0730-0301 1557-7368 |
language | eng |
recordid | cdi_crossref_primary_10_1145_3658140 |
source | ACM Digital Library |
subjects | Animation Computer graphics Computing methodologies Motion processing |
title | Interactive Character Control with Auto-Regressive Motion Diffusion Models |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T09%3A09%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-acm_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Interactive%20Character%20Control%20with%20Auto-Regressive%20Motion%20Diffusion%20Models&rft.jtitle=ACM%20transactions%20on%20graphics&rft.au=Shi,%20Yi&rft.date=2024-07-19&rft.volume=43&rft.issue=4&rft.spage=1&rft.epage=14&rft.pages=1-14&rft.artnum=143&rft.issn=0730-0301&rft.eissn=1557-7368&rft_id=info:doi/10.1145/3658140&rft_dat=%3Cacm_cross%3E3658140%3C/acm_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |