BrepGen: A B-rep Generative Diffusion Model with Structured Latent Geometry
This paper presents BrepGen, a diffusion-based generative approach that directly outputs a Boundary representation (B-rep) Computer-Aided Design (CAD) model. BrepGen represents a B-rep model as a novel structured latent geometry in a hierarchical tree. With the root node representing a whole CAD sol...
Gespeichert in:
Veröffentlicht in: | ACM transactions on graphics 2024-07, Vol.43 (4), p.1-14, Article 119 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 14 |
---|---|
container_issue | 4 |
container_start_page | 1 |
container_title | ACM transactions on graphics |
container_volume | 43 |
creator | Xu, Xiang Lambourne, Joseph Jayaraman, Pradeep Wang, Zhengqing Willis, Karl Furukawa, Yasutaka |
description | This paper presents BrepGen, a diffusion-based generative approach that directly outputs a Boundary representation (B-rep) Computer-Aided Design (CAD) model. BrepGen represents a B-rep model as a novel structured latent geometry in a hierarchical tree. With the root node representing a whole CAD solid, each element of a B-rep model (i.e., a face, an edge, or a vertex) progressively turns into a child-node from top to bottom. B-rep geometry information goes into the nodes as the global bounding box of each primitive along with a latent code describing the local geometric shape. The B-rep topology information is implicitly represented by node duplication. When two faces share an edge, the edge curve will appear twice in the tree, and a T-junction vertex with three incident edges appears six times in the tree with identical node features. Starting from the root and progressing to the leaf, BrepGen employs Transformer-based diffusion models to sequentially denoise node features while duplicated nodes are detected and merged, recovering the B-Rep topology information. Extensive experiments show that BrepGen advances the task of CAD B-rep generation, surpassing existing methods on various benchmarks. Results on our newly collected furniture dataset further showcase its exceptional capability in generating complicated geometry. While previous methods were limited to generating simple prismatic shapes, BrepGen incorporates free-form and doubly-curved surfaces for the first time. Additional applications of BrepGen include CAD autocomplete and design interpolation. The code, pretrained models, and dataset are available at https://github.com/samxuxiang/BrepGen. |
doi_str_mv | 10.1145/3658129 |
format | Article |
fullrecord | <record><control><sourceid>acm_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1145_3658129</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3658129</sourcerecordid><originalsourceid>FETCH-LOGICAL-a169t-77e4f24e94a288e8eeb904e6e70a3bf41836c97ce2012746d0874c177e972bf83</originalsourceid><addsrcrecordid>eNo9kDtPw0AQhE8IJExA9FTXURn2Hr4HXRIgIIwogNo623vCKLaj8xmUf49RAtXsaL7ZYgg5Z3DFmMyuhcoM4_aAJCzLdKqFMockAS0gBQHsmJwMwycAKClVQp4WATcr7G7onC7S6aaTweBi84X0tvF-HJq-o899jWv63cQP-hrDWMUxYE1zF7GLU6NvMYbtKTnybj3g2V5n5P3-7m35kOYvq8flPE8dUzamWqP0XKKVjhuDBrG0IFGhBidKL5kRqrK6Qg6Ma6lqMFpWbKpZzUtvxIxc7v5WoR-GgL7YhKZ1YVswKH43KPYbTOTFjnRV-w_9hT9AAVUk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>BrepGen: A B-rep Generative Diffusion Model with Structured Latent Geometry</title><source>Access via ACM Digital Library</source><creator>Xu, Xiang ; Lambourne, Joseph ; Jayaraman, Pradeep ; Wang, Zhengqing ; Willis, Karl ; Furukawa, Yasutaka</creator><creatorcontrib>Xu, Xiang ; Lambourne, Joseph ; Jayaraman, Pradeep ; Wang, Zhengqing ; Willis, Karl ; Furukawa, Yasutaka</creatorcontrib><description>This paper presents BrepGen, a diffusion-based generative approach that directly outputs a Boundary representation (B-rep) Computer-Aided Design (CAD) model. BrepGen represents a B-rep model as a novel structured latent geometry in a hierarchical tree. With the root node representing a whole CAD solid, each element of a B-rep model (i.e., a face, an edge, or a vertex) progressively turns into a child-node from top to bottom. B-rep geometry information goes into the nodes as the global bounding box of each primitive along with a latent code describing the local geometric shape. The B-rep topology information is implicitly represented by node duplication. When two faces share an edge, the edge curve will appear twice in the tree, and a T-junction vertex with three incident edges appears six times in the tree with identical node features. Starting from the root and progressing to the leaf, BrepGen employs Transformer-based diffusion models to sequentially denoise node features while duplicated nodes are detected and merged, recovering the B-Rep topology information. Extensive experiments show that BrepGen advances the task of CAD B-rep generation, surpassing existing methods on various benchmarks. Results on our newly collected furniture dataset further showcase its exceptional capability in generating complicated geometry. While previous methods were limited to generating simple prismatic shapes, BrepGen incorporates free-form and doubly-curved surfaces for the first time. Additional applications of BrepGen include CAD autocomplete and design interpolation. The code, pretrained models, and dataset are available at https://github.com/samxuxiang/BrepGen.</description><identifier>ISSN: 0730-0301</identifier><identifier>EISSN: 1557-7368</identifier><identifier>DOI: 10.1145/3658129</identifier><language>eng</language><publisher>New York, NY, USA: ACM</publisher><subject>Applied computing ; Architecture (buildings) ; Artificial intelligence ; Arts and humanities ; Computer vision ; Computer-aided design ; Computing methodologies</subject><ispartof>ACM transactions on graphics, 2024-07, Vol.43 (4), p.1-14, Article 119</ispartof><rights>Copyright is held by the owner/author(s). Publication rights licensed to ACM.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-a169t-77e4f24e94a288e8eeb904e6e70a3bf41836c97ce2012746d0874c177e972bf83</cites><orcidid>0009-0004-8067-1927 ; 0000-0002-3437-1470 ; 0000-0002-9892-1945 ; 0000-0001-6314-6136 ; 0000-0002-6990-2294 ; 0009-0006-9775-4512</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://dl.acm.org/doi/pdf/10.1145/3658129$$EPDF$$P50$$Gacm$$H</linktopdf><link.rule.ids>314,780,784,2282,27924,27925,40196,76228</link.rule.ids></links><search><creatorcontrib>Xu, Xiang</creatorcontrib><creatorcontrib>Lambourne, Joseph</creatorcontrib><creatorcontrib>Jayaraman, Pradeep</creatorcontrib><creatorcontrib>Wang, Zhengqing</creatorcontrib><creatorcontrib>Willis, Karl</creatorcontrib><creatorcontrib>Furukawa, Yasutaka</creatorcontrib><title>BrepGen: A B-rep Generative Diffusion Model with Structured Latent Geometry</title><title>ACM transactions on graphics</title><addtitle>ACM TOG</addtitle><description>This paper presents BrepGen, a diffusion-based generative approach that directly outputs a Boundary representation (B-rep) Computer-Aided Design (CAD) model. BrepGen represents a B-rep model as a novel structured latent geometry in a hierarchical tree. With the root node representing a whole CAD solid, each element of a B-rep model (i.e., a face, an edge, or a vertex) progressively turns into a child-node from top to bottom. B-rep geometry information goes into the nodes as the global bounding box of each primitive along with a latent code describing the local geometric shape. The B-rep topology information is implicitly represented by node duplication. When two faces share an edge, the edge curve will appear twice in the tree, and a T-junction vertex with three incident edges appears six times in the tree with identical node features. Starting from the root and progressing to the leaf, BrepGen employs Transformer-based diffusion models to sequentially denoise node features while duplicated nodes are detected and merged, recovering the B-Rep topology information. Extensive experiments show that BrepGen advances the task of CAD B-rep generation, surpassing existing methods on various benchmarks. Results on our newly collected furniture dataset further showcase its exceptional capability in generating complicated geometry. While previous methods were limited to generating simple prismatic shapes, BrepGen incorporates free-form and doubly-curved surfaces for the first time. Additional applications of BrepGen include CAD autocomplete and design interpolation. The code, pretrained models, and dataset are available at https://github.com/samxuxiang/BrepGen.</description><subject>Applied computing</subject><subject>Architecture (buildings)</subject><subject>Artificial intelligence</subject><subject>Arts and humanities</subject><subject>Computer vision</subject><subject>Computer-aided design</subject><subject>Computing methodologies</subject><issn>0730-0301</issn><issn>1557-7368</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNo9kDtPw0AQhE8IJExA9FTXURn2Hr4HXRIgIIwogNo623vCKLaj8xmUf49RAtXsaL7ZYgg5Z3DFmMyuhcoM4_aAJCzLdKqFMockAS0gBQHsmJwMwycAKClVQp4WATcr7G7onC7S6aaTweBi84X0tvF-HJq-o899jWv63cQP-hrDWMUxYE1zF7GLU6NvMYbtKTnybj3g2V5n5P3-7m35kOYvq8flPE8dUzamWqP0XKKVjhuDBrG0IFGhBidKL5kRqrK6Qg6Ma6lqMFpWbKpZzUtvxIxc7v5WoR-GgL7YhKZ1YVswKH43KPYbTOTFjnRV-w_9hT9AAVUk</recordid><startdate>20240719</startdate><enddate>20240719</enddate><creator>Xu, Xiang</creator><creator>Lambourne, Joseph</creator><creator>Jayaraman, Pradeep</creator><creator>Wang, Zhengqing</creator><creator>Willis, Karl</creator><creator>Furukawa, Yasutaka</creator><general>ACM</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0009-0004-8067-1927</orcidid><orcidid>https://orcid.org/0000-0002-3437-1470</orcidid><orcidid>https://orcid.org/0000-0002-9892-1945</orcidid><orcidid>https://orcid.org/0000-0001-6314-6136</orcidid><orcidid>https://orcid.org/0000-0002-6990-2294</orcidid><orcidid>https://orcid.org/0009-0006-9775-4512</orcidid></search><sort><creationdate>20240719</creationdate><title>BrepGen: A B-rep Generative Diffusion Model with Structured Latent Geometry</title><author>Xu, Xiang ; Lambourne, Joseph ; Jayaraman, Pradeep ; Wang, Zhengqing ; Willis, Karl ; Furukawa, Yasutaka</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a169t-77e4f24e94a288e8eeb904e6e70a3bf41836c97ce2012746d0874c177e972bf83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Applied computing</topic><topic>Architecture (buildings)</topic><topic>Artificial intelligence</topic><topic>Arts and humanities</topic><topic>Computer vision</topic><topic>Computer-aided design</topic><topic>Computing methodologies</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xu, Xiang</creatorcontrib><creatorcontrib>Lambourne, Joseph</creatorcontrib><creatorcontrib>Jayaraman, Pradeep</creatorcontrib><creatorcontrib>Wang, Zhengqing</creatorcontrib><creatorcontrib>Willis, Karl</creatorcontrib><creatorcontrib>Furukawa, Yasutaka</creatorcontrib><collection>CrossRef</collection><jtitle>ACM transactions on graphics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Xu, Xiang</au><au>Lambourne, Joseph</au><au>Jayaraman, Pradeep</au><au>Wang, Zhengqing</au><au>Willis, Karl</au><au>Furukawa, Yasutaka</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>BrepGen: A B-rep Generative Diffusion Model with Structured Latent Geometry</atitle><jtitle>ACM transactions on graphics</jtitle><stitle>ACM TOG</stitle><date>2024-07-19</date><risdate>2024</risdate><volume>43</volume><issue>4</issue><spage>1</spage><epage>14</epage><pages>1-14</pages><artnum>119</artnum><issn>0730-0301</issn><eissn>1557-7368</eissn><abstract>This paper presents BrepGen, a diffusion-based generative approach that directly outputs a Boundary representation (B-rep) Computer-Aided Design (CAD) model. BrepGen represents a B-rep model as a novel structured latent geometry in a hierarchical tree. With the root node representing a whole CAD solid, each element of a B-rep model (i.e., a face, an edge, or a vertex) progressively turns into a child-node from top to bottom. B-rep geometry information goes into the nodes as the global bounding box of each primitive along with a latent code describing the local geometric shape. The B-rep topology information is implicitly represented by node duplication. When two faces share an edge, the edge curve will appear twice in the tree, and a T-junction vertex with three incident edges appears six times in the tree with identical node features. Starting from the root and progressing to the leaf, BrepGen employs Transformer-based diffusion models to sequentially denoise node features while duplicated nodes are detected and merged, recovering the B-Rep topology information. Extensive experiments show that BrepGen advances the task of CAD B-rep generation, surpassing existing methods on various benchmarks. Results on our newly collected furniture dataset further showcase its exceptional capability in generating complicated geometry. While previous methods were limited to generating simple prismatic shapes, BrepGen incorporates free-form and doubly-curved surfaces for the first time. Additional applications of BrepGen include CAD autocomplete and design interpolation. The code, pretrained models, and dataset are available at https://github.com/samxuxiang/BrepGen.</abstract><cop>New York, NY, USA</cop><pub>ACM</pub><doi>10.1145/3658129</doi><tpages>14</tpages><orcidid>https://orcid.org/0009-0004-8067-1927</orcidid><orcidid>https://orcid.org/0000-0002-3437-1470</orcidid><orcidid>https://orcid.org/0000-0002-9892-1945</orcidid><orcidid>https://orcid.org/0000-0001-6314-6136</orcidid><orcidid>https://orcid.org/0000-0002-6990-2294</orcidid><orcidid>https://orcid.org/0009-0006-9775-4512</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0730-0301 |
ispartof | ACM transactions on graphics, 2024-07, Vol.43 (4), p.1-14, Article 119 |
issn | 0730-0301 1557-7368 |
language | eng |
recordid | cdi_crossref_primary_10_1145_3658129 |
source | Access via ACM Digital Library |
subjects | Applied computing Architecture (buildings) Artificial intelligence Arts and humanities Computer vision Computer-aided design Computing methodologies |
title | BrepGen: A B-rep Generative Diffusion Model with Structured Latent Geometry |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-30T15%3A44%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-acm_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=BrepGen:%20A%20B-rep%20Generative%20Diffusion%20Model%20with%20Structured%20Latent%20Geometry&rft.jtitle=ACM%20transactions%20on%20graphics&rft.au=Xu,%20Xiang&rft.date=2024-07-19&rft.volume=43&rft.issue=4&rft.spage=1&rft.epage=14&rft.pages=1-14&rft.artnum=119&rft.issn=0730-0301&rft.eissn=1557-7368&rft_id=info:doi/10.1145/3658129&rft_dat=%3Cacm_cross%3E3658129%3C/acm_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |