BrepGen: A B-rep Generative Diffusion Model with Structured Latent Geometry

This paper presents BrepGen, a diffusion-based generative approach that directly outputs a Boundary representation (B-rep) Computer-Aided Design (CAD) model. BrepGen represents a B-rep model as a novel structured latent geometry in a hierarchical tree. With the root node representing a whole CAD sol...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACM transactions on graphics 2024-07, Vol.43 (4), p.1-14, Article 119
Hauptverfasser: Xu, Xiang, Lambourne, Joseph, Jayaraman, Pradeep, Wang, Zhengqing, Willis, Karl, Furukawa, Yasutaka
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 14
container_issue 4
container_start_page 1
container_title ACM transactions on graphics
container_volume 43
creator Xu, Xiang
Lambourne, Joseph
Jayaraman, Pradeep
Wang, Zhengqing
Willis, Karl
Furukawa, Yasutaka
description This paper presents BrepGen, a diffusion-based generative approach that directly outputs a Boundary representation (B-rep) Computer-Aided Design (CAD) model. BrepGen represents a B-rep model as a novel structured latent geometry in a hierarchical tree. With the root node representing a whole CAD solid, each element of a B-rep model (i.e., a face, an edge, or a vertex) progressively turns into a child-node from top to bottom. B-rep geometry information goes into the nodes as the global bounding box of each primitive along with a latent code describing the local geometric shape. The B-rep topology information is implicitly represented by node duplication. When two faces share an edge, the edge curve will appear twice in the tree, and a T-junction vertex with three incident edges appears six times in the tree with identical node features. Starting from the root and progressing to the leaf, BrepGen employs Transformer-based diffusion models to sequentially denoise node features while duplicated nodes are detected and merged, recovering the B-Rep topology information. Extensive experiments show that BrepGen advances the task of CAD B-rep generation, surpassing existing methods on various benchmarks. Results on our newly collected furniture dataset further showcase its exceptional capability in generating complicated geometry. While previous methods were limited to generating simple prismatic shapes, BrepGen incorporates free-form and doubly-curved surfaces for the first time. Additional applications of BrepGen include CAD autocomplete and design interpolation. The code, pretrained models, and dataset are available at https://github.com/samxuxiang/BrepGen.
doi_str_mv 10.1145/3658129
format Article
fullrecord <record><control><sourceid>acm_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1145_3658129</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3658129</sourcerecordid><originalsourceid>FETCH-LOGICAL-a169t-77e4f24e94a288e8eeb904e6e70a3bf41836c97ce2012746d0874c177e972bf83</originalsourceid><addsrcrecordid>eNo9kDtPw0AQhE8IJExA9FTXURn2Hr4HXRIgIIwogNo623vCKLaj8xmUf49RAtXsaL7ZYgg5Z3DFmMyuhcoM4_aAJCzLdKqFMockAS0gBQHsmJwMwycAKClVQp4WATcr7G7onC7S6aaTweBi84X0tvF-HJq-o899jWv63cQP-hrDWMUxYE1zF7GLU6NvMYbtKTnybj3g2V5n5P3-7m35kOYvq8flPE8dUzamWqP0XKKVjhuDBrG0IFGhBidKL5kRqrK6Qg6Ma6lqMFpWbKpZzUtvxIxc7v5WoR-GgL7YhKZ1YVswKH43KPYbTOTFjnRV-w_9hT9AAVUk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>BrepGen: A B-rep Generative Diffusion Model with Structured Latent Geometry</title><source>Access via ACM Digital Library</source><creator>Xu, Xiang ; Lambourne, Joseph ; Jayaraman, Pradeep ; Wang, Zhengqing ; Willis, Karl ; Furukawa, Yasutaka</creator><creatorcontrib>Xu, Xiang ; Lambourne, Joseph ; Jayaraman, Pradeep ; Wang, Zhengqing ; Willis, Karl ; Furukawa, Yasutaka</creatorcontrib><description>This paper presents BrepGen, a diffusion-based generative approach that directly outputs a Boundary representation (B-rep) Computer-Aided Design (CAD) model. BrepGen represents a B-rep model as a novel structured latent geometry in a hierarchical tree. With the root node representing a whole CAD solid, each element of a B-rep model (i.e., a face, an edge, or a vertex) progressively turns into a child-node from top to bottom. B-rep geometry information goes into the nodes as the global bounding box of each primitive along with a latent code describing the local geometric shape. The B-rep topology information is implicitly represented by node duplication. When two faces share an edge, the edge curve will appear twice in the tree, and a T-junction vertex with three incident edges appears six times in the tree with identical node features. Starting from the root and progressing to the leaf, BrepGen employs Transformer-based diffusion models to sequentially denoise node features while duplicated nodes are detected and merged, recovering the B-Rep topology information. Extensive experiments show that BrepGen advances the task of CAD B-rep generation, surpassing existing methods on various benchmarks. Results on our newly collected furniture dataset further showcase its exceptional capability in generating complicated geometry. While previous methods were limited to generating simple prismatic shapes, BrepGen incorporates free-form and doubly-curved surfaces for the first time. Additional applications of BrepGen include CAD autocomplete and design interpolation. The code, pretrained models, and dataset are available at https://github.com/samxuxiang/BrepGen.</description><identifier>ISSN: 0730-0301</identifier><identifier>EISSN: 1557-7368</identifier><identifier>DOI: 10.1145/3658129</identifier><language>eng</language><publisher>New York, NY, USA: ACM</publisher><subject>Applied computing ; Architecture (buildings) ; Artificial intelligence ; Arts and humanities ; Computer vision ; Computer-aided design ; Computing methodologies</subject><ispartof>ACM transactions on graphics, 2024-07, Vol.43 (4), p.1-14, Article 119</ispartof><rights>Copyright is held by the owner/author(s). Publication rights licensed to ACM.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-a169t-77e4f24e94a288e8eeb904e6e70a3bf41836c97ce2012746d0874c177e972bf83</cites><orcidid>0009-0004-8067-1927 ; 0000-0002-3437-1470 ; 0000-0002-9892-1945 ; 0000-0001-6314-6136 ; 0000-0002-6990-2294 ; 0009-0006-9775-4512</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://dl.acm.org/doi/pdf/10.1145/3658129$$EPDF$$P50$$Gacm$$H</linktopdf><link.rule.ids>314,780,784,2282,27924,27925,40196,76228</link.rule.ids></links><search><creatorcontrib>Xu, Xiang</creatorcontrib><creatorcontrib>Lambourne, Joseph</creatorcontrib><creatorcontrib>Jayaraman, Pradeep</creatorcontrib><creatorcontrib>Wang, Zhengqing</creatorcontrib><creatorcontrib>Willis, Karl</creatorcontrib><creatorcontrib>Furukawa, Yasutaka</creatorcontrib><title>BrepGen: A B-rep Generative Diffusion Model with Structured Latent Geometry</title><title>ACM transactions on graphics</title><addtitle>ACM TOG</addtitle><description>This paper presents BrepGen, a diffusion-based generative approach that directly outputs a Boundary representation (B-rep) Computer-Aided Design (CAD) model. BrepGen represents a B-rep model as a novel structured latent geometry in a hierarchical tree. With the root node representing a whole CAD solid, each element of a B-rep model (i.e., a face, an edge, or a vertex) progressively turns into a child-node from top to bottom. B-rep geometry information goes into the nodes as the global bounding box of each primitive along with a latent code describing the local geometric shape. The B-rep topology information is implicitly represented by node duplication. When two faces share an edge, the edge curve will appear twice in the tree, and a T-junction vertex with three incident edges appears six times in the tree with identical node features. Starting from the root and progressing to the leaf, BrepGen employs Transformer-based diffusion models to sequentially denoise node features while duplicated nodes are detected and merged, recovering the B-Rep topology information. Extensive experiments show that BrepGen advances the task of CAD B-rep generation, surpassing existing methods on various benchmarks. Results on our newly collected furniture dataset further showcase its exceptional capability in generating complicated geometry. While previous methods were limited to generating simple prismatic shapes, BrepGen incorporates free-form and doubly-curved surfaces for the first time. Additional applications of BrepGen include CAD autocomplete and design interpolation. The code, pretrained models, and dataset are available at https://github.com/samxuxiang/BrepGen.</description><subject>Applied computing</subject><subject>Architecture (buildings)</subject><subject>Artificial intelligence</subject><subject>Arts and humanities</subject><subject>Computer vision</subject><subject>Computer-aided design</subject><subject>Computing methodologies</subject><issn>0730-0301</issn><issn>1557-7368</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNo9kDtPw0AQhE8IJExA9FTXURn2Hr4HXRIgIIwogNo623vCKLaj8xmUf49RAtXsaL7ZYgg5Z3DFmMyuhcoM4_aAJCzLdKqFMockAS0gBQHsmJwMwycAKClVQp4WATcr7G7onC7S6aaTweBi84X0tvF-HJq-o899jWv63cQP-hrDWMUxYE1zF7GLU6NvMYbtKTnybj3g2V5n5P3-7m35kOYvq8flPE8dUzamWqP0XKKVjhuDBrG0IFGhBidKL5kRqrK6Qg6Ma6lqMFpWbKpZzUtvxIxc7v5WoR-GgL7YhKZ1YVswKH43KPYbTOTFjnRV-w_9hT9AAVUk</recordid><startdate>20240719</startdate><enddate>20240719</enddate><creator>Xu, Xiang</creator><creator>Lambourne, Joseph</creator><creator>Jayaraman, Pradeep</creator><creator>Wang, Zhengqing</creator><creator>Willis, Karl</creator><creator>Furukawa, Yasutaka</creator><general>ACM</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0009-0004-8067-1927</orcidid><orcidid>https://orcid.org/0000-0002-3437-1470</orcidid><orcidid>https://orcid.org/0000-0002-9892-1945</orcidid><orcidid>https://orcid.org/0000-0001-6314-6136</orcidid><orcidid>https://orcid.org/0000-0002-6990-2294</orcidid><orcidid>https://orcid.org/0009-0006-9775-4512</orcidid></search><sort><creationdate>20240719</creationdate><title>BrepGen: A B-rep Generative Diffusion Model with Structured Latent Geometry</title><author>Xu, Xiang ; Lambourne, Joseph ; Jayaraman, Pradeep ; Wang, Zhengqing ; Willis, Karl ; Furukawa, Yasutaka</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a169t-77e4f24e94a288e8eeb904e6e70a3bf41836c97ce2012746d0874c177e972bf83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Applied computing</topic><topic>Architecture (buildings)</topic><topic>Artificial intelligence</topic><topic>Arts and humanities</topic><topic>Computer vision</topic><topic>Computer-aided design</topic><topic>Computing methodologies</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xu, Xiang</creatorcontrib><creatorcontrib>Lambourne, Joseph</creatorcontrib><creatorcontrib>Jayaraman, Pradeep</creatorcontrib><creatorcontrib>Wang, Zhengqing</creatorcontrib><creatorcontrib>Willis, Karl</creatorcontrib><creatorcontrib>Furukawa, Yasutaka</creatorcontrib><collection>CrossRef</collection><jtitle>ACM transactions on graphics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Xu, Xiang</au><au>Lambourne, Joseph</au><au>Jayaraman, Pradeep</au><au>Wang, Zhengqing</au><au>Willis, Karl</au><au>Furukawa, Yasutaka</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>BrepGen: A B-rep Generative Diffusion Model with Structured Latent Geometry</atitle><jtitle>ACM transactions on graphics</jtitle><stitle>ACM TOG</stitle><date>2024-07-19</date><risdate>2024</risdate><volume>43</volume><issue>4</issue><spage>1</spage><epage>14</epage><pages>1-14</pages><artnum>119</artnum><issn>0730-0301</issn><eissn>1557-7368</eissn><abstract>This paper presents BrepGen, a diffusion-based generative approach that directly outputs a Boundary representation (B-rep) Computer-Aided Design (CAD) model. BrepGen represents a B-rep model as a novel structured latent geometry in a hierarchical tree. With the root node representing a whole CAD solid, each element of a B-rep model (i.e., a face, an edge, or a vertex) progressively turns into a child-node from top to bottom. B-rep geometry information goes into the nodes as the global bounding box of each primitive along with a latent code describing the local geometric shape. The B-rep topology information is implicitly represented by node duplication. When two faces share an edge, the edge curve will appear twice in the tree, and a T-junction vertex with three incident edges appears six times in the tree with identical node features. Starting from the root and progressing to the leaf, BrepGen employs Transformer-based diffusion models to sequentially denoise node features while duplicated nodes are detected and merged, recovering the B-Rep topology information. Extensive experiments show that BrepGen advances the task of CAD B-rep generation, surpassing existing methods on various benchmarks. Results on our newly collected furniture dataset further showcase its exceptional capability in generating complicated geometry. While previous methods were limited to generating simple prismatic shapes, BrepGen incorporates free-form and doubly-curved surfaces for the first time. Additional applications of BrepGen include CAD autocomplete and design interpolation. The code, pretrained models, and dataset are available at https://github.com/samxuxiang/BrepGen.</abstract><cop>New York, NY, USA</cop><pub>ACM</pub><doi>10.1145/3658129</doi><tpages>14</tpages><orcidid>https://orcid.org/0009-0004-8067-1927</orcidid><orcidid>https://orcid.org/0000-0002-3437-1470</orcidid><orcidid>https://orcid.org/0000-0002-9892-1945</orcidid><orcidid>https://orcid.org/0000-0001-6314-6136</orcidid><orcidid>https://orcid.org/0000-0002-6990-2294</orcidid><orcidid>https://orcid.org/0009-0006-9775-4512</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0730-0301
ispartof ACM transactions on graphics, 2024-07, Vol.43 (4), p.1-14, Article 119
issn 0730-0301
1557-7368
language eng
recordid cdi_crossref_primary_10_1145_3658129
source Access via ACM Digital Library
subjects Applied computing
Architecture (buildings)
Artificial intelligence
Arts and humanities
Computer vision
Computer-aided design
Computing methodologies
title BrepGen: A B-rep Generative Diffusion Model with Structured Latent Geometry
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-30T15%3A44%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-acm_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=BrepGen:%20A%20B-rep%20Generative%20Diffusion%20Model%20with%20Structured%20Latent%20Geometry&rft.jtitle=ACM%20transactions%20on%20graphics&rft.au=Xu,%20Xiang&rft.date=2024-07-19&rft.volume=43&rft.issue=4&rft.spage=1&rft.epage=14&rft.pages=1-14&rft.artnum=119&rft.issn=0730-0301&rft.eissn=1557-7368&rft_id=info:doi/10.1145/3658129&rft_dat=%3Cacm_cross%3E3658129%3C/acm_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true