Input-Relational Verification of Deep Neural Networks

We consider the verification of input-relational properties defined over deep neural networks (DNNs) such as robustness against universal adversarial perturbations, monotonicity, etc. Precise verification of these properties requires reasoning about multiple executions of the same DNN. We introduce...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of ACM on programming languages 2024-06, Vol.8 (PLDI), p.1-27, Article 147
Hauptverfasser: Banerjee, Debangshu, Xu, Changming, Singh, Gagandeep
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 27
container_issue PLDI
container_start_page 1
container_title Proceedings of ACM on programming languages
container_volume 8
creator Banerjee, Debangshu
Xu, Changming
Singh, Gagandeep
description We consider the verification of input-relational properties defined over deep neural networks (DNNs) such as robustness against universal adversarial perturbations, monotonicity, etc. Precise verification of these properties requires reasoning about multiple executions of the same DNN. We introduce a novel concept of difference tracking to compute the difference between the outputs of two executions of the same DNN at all layers. We design a new abstract domain, DiffPoly for efficient difference tracking that can scale large DNNs. DiffPoly is equipped with custom abstract transformers for common activation functions (ReLU, Tanh, Sigmoid, etc.) and affine layers and can create precise linear cross-execution constraints. We implement an input-relational verifier for DNNs called RaVeN which uses DiffPoly and linear program formulations to handle a wide range of input-relational properties. Our experimental results on challenging benchmarks show that by leveraging precise linear constraints defined over multiple executions of the DNN, RaVeN gains substantial precision over baselines on a wide range of datasets, networks, and input-relational properties.
doi_str_mv 10.1145/3656377
format Article
fullrecord <record><control><sourceid>acm_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1145_3656377</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3656377</sourcerecordid><originalsourceid>FETCH-LOGICAL-a239t-9759d835b48f79a5df83c9e53c666ca3a916b852a1bfcdd2755f8b0c209a27a73</originalsourceid><addsrcrecordid>eNpNj01LAzEYhIMoWNri3dPePEXz9ebjKFVroVQQ9bq8m01gddtdki3iv7faKj3NDPMwMIRccHbNuYIbqUFLY07ISCgDlCvBT4_8OZnm_M4Y404qK92IwGLTbwf6HFocmm6DbfEWUhMb_xuLLhZ3IfTFKmzTrluF4bNLH3lCziK2OUwPOiavD_cvs0e6fJovZrdLikK6gToDrrYSKmWjcQh1tNK7ANJrrT1KdFxXFgTyKvq6FgYg2op5wRwKg0aOydV-16cu5xRi2admjemr5Kz8OVweDu_Iyz2Jfv0P_ZXfW3dO5A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Input-Relational Verification of Deep Neural Networks</title><source>ACM Digital Library</source><source>EZB Electronic Journals Library</source><creator>Banerjee, Debangshu ; Xu, Changming ; Singh, Gagandeep</creator><creatorcontrib>Banerjee, Debangshu ; Xu, Changming ; Singh, Gagandeep</creatorcontrib><description>We consider the verification of input-relational properties defined over deep neural networks (DNNs) such as robustness against universal adversarial perturbations, monotonicity, etc. Precise verification of these properties requires reasoning about multiple executions of the same DNN. We introduce a novel concept of difference tracking to compute the difference between the outputs of two executions of the same DNN at all layers. We design a new abstract domain, DiffPoly for efficient difference tracking that can scale large DNNs. DiffPoly is equipped with custom abstract transformers for common activation functions (ReLU, Tanh, Sigmoid, etc.) and affine layers and can create precise linear cross-execution constraints. We implement an input-relational verifier for DNNs called RaVeN which uses DiffPoly and linear program formulations to handle a wide range of input-relational properties. Our experimental results on challenging benchmarks show that by leveraging precise linear constraints defined over multiple executions of the DNN, RaVeN gains substantial precision over baselines on a wide range of datasets, networks, and input-relational properties.</description><identifier>ISSN: 2475-1421</identifier><identifier>EISSN: 2475-1421</identifier><identifier>DOI: 10.1145/3656377</identifier><language>eng</language><publisher>New York, NY, USA: ACM</publisher><subject>Abstraction ; Computing methodologies ; Neural networks ; Program verification ; Theory of computation</subject><ispartof>Proceedings of ACM on programming languages, 2024-06, Vol.8 (PLDI), p.1-27, Article 147</ispartof><rights>Owner/Author</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-a239t-9759d835b48f79a5df83c9e53c666ca3a916b852a1bfcdd2755f8b0c209a27a73</cites><orcidid>0000-0003-3079-5652 ; 0000-0002-9299-2961 ; 0009-0001-0163-9717</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://dl.acm.org/doi/pdf/10.1145/3656377$$EPDF$$P50$$Gacm$$Hfree_for_read</linktopdf><link.rule.ids>314,776,780,2276,27901,27902,40172,75970</link.rule.ids></links><search><creatorcontrib>Banerjee, Debangshu</creatorcontrib><creatorcontrib>Xu, Changming</creatorcontrib><creatorcontrib>Singh, Gagandeep</creatorcontrib><title>Input-Relational Verification of Deep Neural Networks</title><title>Proceedings of ACM on programming languages</title><addtitle>ACM PACMPL</addtitle><description>We consider the verification of input-relational properties defined over deep neural networks (DNNs) such as robustness against universal adversarial perturbations, monotonicity, etc. Precise verification of these properties requires reasoning about multiple executions of the same DNN. We introduce a novel concept of difference tracking to compute the difference between the outputs of two executions of the same DNN at all layers. We design a new abstract domain, DiffPoly for efficient difference tracking that can scale large DNNs. DiffPoly is equipped with custom abstract transformers for common activation functions (ReLU, Tanh, Sigmoid, etc.) and affine layers and can create precise linear cross-execution constraints. We implement an input-relational verifier for DNNs called RaVeN which uses DiffPoly and linear program formulations to handle a wide range of input-relational properties. Our experimental results on challenging benchmarks show that by leveraging precise linear constraints defined over multiple executions of the DNN, RaVeN gains substantial precision over baselines on a wide range of datasets, networks, and input-relational properties.</description><subject>Abstraction</subject><subject>Computing methodologies</subject><subject>Neural networks</subject><subject>Program verification</subject><subject>Theory of computation</subject><issn>2475-1421</issn><issn>2475-1421</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNpNj01LAzEYhIMoWNri3dPePEXz9ebjKFVroVQQ9bq8m01gddtdki3iv7faKj3NDPMwMIRccHbNuYIbqUFLY07ISCgDlCvBT4_8OZnm_M4Y404qK92IwGLTbwf6HFocmm6DbfEWUhMb_xuLLhZ3IfTFKmzTrluF4bNLH3lCziK2OUwPOiavD_cvs0e6fJovZrdLikK6gToDrrYSKmWjcQh1tNK7ANJrrT1KdFxXFgTyKvq6FgYg2op5wRwKg0aOydV-16cu5xRi2admjemr5Kz8OVweDu_Iyz2Jfv0P_ZXfW3dO5A</recordid><startdate>20240620</startdate><enddate>20240620</enddate><creator>Banerjee, Debangshu</creator><creator>Xu, Changming</creator><creator>Singh, Gagandeep</creator><general>ACM</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0003-3079-5652</orcidid><orcidid>https://orcid.org/0000-0002-9299-2961</orcidid><orcidid>https://orcid.org/0009-0001-0163-9717</orcidid></search><sort><creationdate>20240620</creationdate><title>Input-Relational Verification of Deep Neural Networks</title><author>Banerjee, Debangshu ; Xu, Changming ; Singh, Gagandeep</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a239t-9759d835b48f79a5df83c9e53c666ca3a916b852a1bfcdd2755f8b0c209a27a73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Abstraction</topic><topic>Computing methodologies</topic><topic>Neural networks</topic><topic>Program verification</topic><topic>Theory of computation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Banerjee, Debangshu</creatorcontrib><creatorcontrib>Xu, Changming</creatorcontrib><creatorcontrib>Singh, Gagandeep</creatorcontrib><collection>CrossRef</collection><jtitle>Proceedings of ACM on programming languages</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Banerjee, Debangshu</au><au>Xu, Changming</au><au>Singh, Gagandeep</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Input-Relational Verification of Deep Neural Networks</atitle><jtitle>Proceedings of ACM on programming languages</jtitle><stitle>ACM PACMPL</stitle><date>2024-06-20</date><risdate>2024</risdate><volume>8</volume><issue>PLDI</issue><spage>1</spage><epage>27</epage><pages>1-27</pages><artnum>147</artnum><issn>2475-1421</issn><eissn>2475-1421</eissn><abstract>We consider the verification of input-relational properties defined over deep neural networks (DNNs) such as robustness against universal adversarial perturbations, monotonicity, etc. Precise verification of these properties requires reasoning about multiple executions of the same DNN. We introduce a novel concept of difference tracking to compute the difference between the outputs of two executions of the same DNN at all layers. We design a new abstract domain, DiffPoly for efficient difference tracking that can scale large DNNs. DiffPoly is equipped with custom abstract transformers for common activation functions (ReLU, Tanh, Sigmoid, etc.) and affine layers and can create precise linear cross-execution constraints. We implement an input-relational verifier for DNNs called RaVeN which uses DiffPoly and linear program formulations to handle a wide range of input-relational properties. Our experimental results on challenging benchmarks show that by leveraging precise linear constraints defined over multiple executions of the DNN, RaVeN gains substantial precision over baselines on a wide range of datasets, networks, and input-relational properties.</abstract><cop>New York, NY, USA</cop><pub>ACM</pub><doi>10.1145/3656377</doi><tpages>27</tpages><orcidid>https://orcid.org/0000-0003-3079-5652</orcidid><orcidid>https://orcid.org/0000-0002-9299-2961</orcidid><orcidid>https://orcid.org/0009-0001-0163-9717</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2475-1421
ispartof Proceedings of ACM on programming languages, 2024-06, Vol.8 (PLDI), p.1-27, Article 147
issn 2475-1421
2475-1421
language eng
recordid cdi_crossref_primary_10_1145_3656377
source ACM Digital Library; EZB Electronic Journals Library
subjects Abstraction
Computing methodologies
Neural networks
Program verification
Theory of computation
title Input-Relational Verification of Deep Neural Networks
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T18%3A15%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-acm_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Input-Relational%20Verification%20of%20Deep%20Neural%20Networks&rft.jtitle=Proceedings%20of%20ACM%20on%20programming%20languages&rft.au=Banerjee,%20Debangshu&rft.date=2024-06-20&rft.volume=8&rft.issue=PLDI&rft.spage=1&rft.epage=27&rft.pages=1-27&rft.artnum=147&rft.issn=2475-1421&rft.eissn=2475-1421&rft_id=info:doi/10.1145/3656377&rft_dat=%3Cacm_cross%3E3656377%3C/acm_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true