Applied Machine Learning for Information Security
Information security has undoubtedly become a critical aspect of modern cybersecurity practices. Over the past half-decade, numerous academic and industry groups have sought to develop machine learning, deep learning, and other areas of artificial intelligence-enabled analytics into information secu...
Gespeichert in:
Veröffentlicht in: | Digital threats (Print) 2024-04, Vol.5 (1), p.1-5, Article 1 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 5 |
---|---|
container_issue | 1 |
container_start_page | 1 |
container_title | Digital threats (Print) |
container_volume | 5 |
creator | Samtani, Sagar Raff, Edward Anderson, Hyrum |
description | Information security has undoubtedly become a critical aspect of modern cybersecurity practices. Over the past half-decade, numerous academic and industry groups have sought to develop machine learning, deep learning, and other areas of artificial intelligence-enabled analytics into information security practices. The Conference on Applied Machine Learning (CAMLIS) is an emerging venue that seeks to gather researchers and practitioners to discuss applied and fundamental research on machine learning for information security applications. In 2021, CAMLIS partnered with ACM Digital Threats: Research and Practice (DTRAP) to provide opportunities for authors of accepted CAMLIS papers to submit their research for consideration into ACM DTRAP via a Special Issue on Applied Machine Learning for Information Security. This editorial summarizes the results of this Special Issue. |
doi_str_mv | 10.1145/3652029 |
format | Article |
fullrecord | <record><control><sourceid>acm_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1145_3652029</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3652029</sourcerecordid><originalsourceid>FETCH-LOGICAL-a239t-8a189e145d35d9b17f4ee5a26d82680828f225387febd32a0ae8c0c079fd1fe03</originalsourceid><addsrcrecordid>eNo9jz1PwzAQhi0EElWp2JmyMQXO59ixx6oCWimoQ2GOXPsMRs2HnDD03xPUwnLvSe-j0z2M3XJ44LyQj0JJBDQXbIayVLkUorycdmUw5wrVNVsMwxcAoOCFlmbG-LLvD5F89mrdZ2wpq8imNrYfWehStmmn2dgxdm22I_ed4ni8YVfBHgZanHPO3p-f3lbrvNq-bFbLKrcozJhry7Wh6ScvpDd7XoaCSFpUXqPSoFEHRCl0GWjvBVqwpB04KE3wPBCIObs_3XWpG4ZEoe5TbGw61hzqX9n6LDuRdyfSuuYf-it_AMhzTUc</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Applied Machine Learning for Information Security</title><source>EZB-FREE-00999 freely available EZB journals</source><creator>Samtani, Sagar ; Raff, Edward ; Anderson, Hyrum</creator><creatorcontrib>Samtani, Sagar ; Raff, Edward ; Anderson, Hyrum</creatorcontrib><description>Information security has undoubtedly become a critical aspect of modern cybersecurity practices. Over the past half-decade, numerous academic and industry groups have sought to develop machine learning, deep learning, and other areas of artificial intelligence-enabled analytics into information security practices. The Conference on Applied Machine Learning (CAMLIS) is an emerging venue that seeks to gather researchers and practitioners to discuss applied and fundamental research on machine learning for information security applications. In 2021, CAMLIS partnered with ACM Digital Threats: Research and Practice (DTRAP) to provide opportunities for authors of accepted CAMLIS papers to submit their research for consideration into ACM DTRAP via a Special Issue on Applied Machine Learning for Information Security. This editorial summarizes the results of this Special Issue.</description><identifier>ISSN: 2692-1626</identifier><identifier>EISSN: 2576-5337</identifier><identifier>DOI: 10.1145/3652029</identifier><language>eng</language><publisher>New York, NY: ACM</publisher><subject>Artificial intelligence ; Computing methodologies ; Security and privacy ; Software and application security</subject><ispartof>Digital threats (Print), 2024-04, Vol.5 (1), p.1-5, Article 1</ispartof><rights>Copyright held by the owner/author(s).</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-a239t-8a189e145d35d9b17f4ee5a26d82680828f225387febd32a0ae8c0c079fd1fe03</cites><orcidid>0009-0009-4720-6907 ; 0000-0002-4513-805X ; 0000-0002-9900-1972</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Samtani, Sagar</creatorcontrib><creatorcontrib>Raff, Edward</creatorcontrib><creatorcontrib>Anderson, Hyrum</creatorcontrib><title>Applied Machine Learning for Information Security</title><title>Digital threats (Print)</title><addtitle>ACM DTRAP</addtitle><description>Information security has undoubtedly become a critical aspect of modern cybersecurity practices. Over the past half-decade, numerous academic and industry groups have sought to develop machine learning, deep learning, and other areas of artificial intelligence-enabled analytics into information security practices. The Conference on Applied Machine Learning (CAMLIS) is an emerging venue that seeks to gather researchers and practitioners to discuss applied and fundamental research on machine learning for information security applications. In 2021, CAMLIS partnered with ACM Digital Threats: Research and Practice (DTRAP) to provide opportunities for authors of accepted CAMLIS papers to submit their research for consideration into ACM DTRAP via a Special Issue on Applied Machine Learning for Information Security. This editorial summarizes the results of this Special Issue.</description><subject>Artificial intelligence</subject><subject>Computing methodologies</subject><subject>Security and privacy</subject><subject>Software and application security</subject><issn>2692-1626</issn><issn>2576-5337</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNo9jz1PwzAQhi0EElWp2JmyMQXO59ixx6oCWimoQ2GOXPsMRs2HnDD03xPUwnLvSe-j0z2M3XJ44LyQj0JJBDQXbIayVLkUorycdmUw5wrVNVsMwxcAoOCFlmbG-LLvD5F89mrdZ2wpq8imNrYfWehStmmn2dgxdm22I_ed4ni8YVfBHgZanHPO3p-f3lbrvNq-bFbLKrcozJhry7Wh6ScvpDd7XoaCSFpUXqPSoFEHRCl0GWjvBVqwpB04KE3wPBCIObs_3XWpG4ZEoe5TbGw61hzqX9n6LDuRdyfSuuYf-it_AMhzTUc</recordid><startdate>20240405</startdate><enddate>20240405</enddate><creator>Samtani, Sagar</creator><creator>Raff, Edward</creator><creator>Anderson, Hyrum</creator><general>ACM</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0009-0009-4720-6907</orcidid><orcidid>https://orcid.org/0000-0002-4513-805X</orcidid><orcidid>https://orcid.org/0000-0002-9900-1972</orcidid></search><sort><creationdate>20240405</creationdate><title>Applied Machine Learning for Information Security</title><author>Samtani, Sagar ; Raff, Edward ; Anderson, Hyrum</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a239t-8a189e145d35d9b17f4ee5a26d82680828f225387febd32a0ae8c0c079fd1fe03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Artificial intelligence</topic><topic>Computing methodologies</topic><topic>Security and privacy</topic><topic>Software and application security</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Samtani, Sagar</creatorcontrib><creatorcontrib>Raff, Edward</creatorcontrib><creatorcontrib>Anderson, Hyrum</creatorcontrib><collection>CrossRef</collection><jtitle>Digital threats (Print)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Samtani, Sagar</au><au>Raff, Edward</au><au>Anderson, Hyrum</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Applied Machine Learning for Information Security</atitle><jtitle>Digital threats (Print)</jtitle><stitle>ACM DTRAP</stitle><date>2024-04-05</date><risdate>2024</risdate><volume>5</volume><issue>1</issue><spage>1</spage><epage>5</epage><pages>1-5</pages><artnum>1</artnum><issn>2692-1626</issn><eissn>2576-5337</eissn><abstract>Information security has undoubtedly become a critical aspect of modern cybersecurity practices. Over the past half-decade, numerous academic and industry groups have sought to develop machine learning, deep learning, and other areas of artificial intelligence-enabled analytics into information security practices. The Conference on Applied Machine Learning (CAMLIS) is an emerging venue that seeks to gather researchers and practitioners to discuss applied and fundamental research on machine learning for information security applications. In 2021, CAMLIS partnered with ACM Digital Threats: Research and Practice (DTRAP) to provide opportunities for authors of accepted CAMLIS papers to submit their research for consideration into ACM DTRAP via a Special Issue on Applied Machine Learning for Information Security. This editorial summarizes the results of this Special Issue.</abstract><cop>New York, NY</cop><pub>ACM</pub><doi>10.1145/3652029</doi><tpages>5</tpages><orcidid>https://orcid.org/0009-0009-4720-6907</orcidid><orcidid>https://orcid.org/0000-0002-4513-805X</orcidid><orcidid>https://orcid.org/0000-0002-9900-1972</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2692-1626 |
ispartof | Digital threats (Print), 2024-04, Vol.5 (1), p.1-5, Article 1 |
issn | 2692-1626 2576-5337 |
language | eng |
recordid | cdi_crossref_primary_10_1145_3652029 |
source | EZB-FREE-00999 freely available EZB journals |
subjects | Artificial intelligence Computing methodologies Security and privacy Software and application security |
title | Applied Machine Learning for Information Security |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T13%3A03%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-acm_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Applied%20Machine%20Learning%20for%20Information%20Security&rft.jtitle=Digital%20threats%20(Print)&rft.au=Samtani,%20Sagar&rft.date=2024-04-05&rft.volume=5&rft.issue=1&rft.spage=1&rft.epage=5&rft.pages=1-5&rft.artnum=1&rft.issn=2692-1626&rft.eissn=2576-5337&rft_id=info:doi/10.1145/3652029&rft_dat=%3Cacm_cross%3E3652029%3C/acm_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |