Learning Nighttime Semantic Segmentation the Hard Way

Nighttime semantic segmentation is an important but challenging research problem for autonomous driving. The major challenges lie in the small objects or regions from the under-/over-exposed areas or suffer from motion blur caused by the camera deployed on moving vehicles. To resolve this, we propos...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACM transactions on multimedia computing communications and applications 2024-05, Vol.20 (7), p.1-23, Article 213
Hauptverfasser: Liu, Wenxi, Cai, Jiaxin, Li, Qi, Liao, Chenyang, Cao, Jingjing, He, Shengfeng, Yu, Yuanlong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 23
container_issue 7
container_start_page 1
container_title ACM transactions on multimedia computing communications and applications
container_volume 20
creator Liu, Wenxi
Cai, Jiaxin
Li, Qi
Liao, Chenyang
Cao, Jingjing
He, Shengfeng
Yu, Yuanlong
description Nighttime semantic segmentation is an important but challenging research problem for autonomous driving. The major challenges lie in the small objects or regions from the under-/over-exposed areas or suffer from motion blur caused by the camera deployed on moving vehicles. To resolve this, we propose a novel hard-class-aware module that bridges the main network for full-class segmentation and the hard-class network for segmenting aforementioned hard-class objects. In specific, it exploits the shared focus of hard-class objects from the dual-stream network, enabling the contextual information flow to guide the model to concentrate on the pixels that are hard to classify. In the end, the estimated hard-class segmentation results will be utilized to infer the final results via an adaptive probabilistic fusion refinement scheme. Moreover, to overcome over-smoothing and noise caused by extreme exposures, our model is modulated by a carefully crafted pretext task of constructing an exposure-aware semantic gradient map, which guides the model to faithfully perceive the structural and semantic information of hard-class objects while mitigating the negative impact of noises and uneven exposures. In experiments, we demonstrate that our unique network design leads to superior segmentation performance over existing methods, featuring the strong ability of perceiving hard-class objects under adverse conditions.
doi_str_mv 10.1145/3650032
format Article
fullrecord <record><control><sourceid>acm_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1145_3650032</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3650032</sourcerecordid><originalsourceid>FETCH-LOGICAL-a239t-6f7e1b00bd0a5800287198fe3980b87240ebaaa9d63ac4ce47c138debdbc81563</originalsourceid><addsrcrecordid>eNo9j8FLwzAYxYMoOKd495Sbp-qXpknTowzdhLIdVDyWL8nXLmI7SXPZf29lc6f3g_fjwWPsVsCDEIV6lFoByPyMzYRSItNGq_MTq_KSXY3j12RoVegZUzVhHMLQ8XXotimFnvgb9Tik4CboehoSprAbeNoSX2H0_BP31-yixe-Rbo45Zx8vz--LVVZvlq-LpzrDXFYp021JwgJYD6gMQG5KUZmWZGXAmjIvgCwiVl5LdIWjonRCGk_WW2eE0nLO7g-7Lu7GMVLb_MTQY9w3Apq_t83x7WTeHUx0_Un6L38Bl-NOKQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Learning Nighttime Semantic Segmentation the Hard Way</title><source>ACM Digital Library Complete</source><creator>Liu, Wenxi ; Cai, Jiaxin ; Li, Qi ; Liao, Chenyang ; Cao, Jingjing ; He, Shengfeng ; Yu, Yuanlong</creator><creatorcontrib>Liu, Wenxi ; Cai, Jiaxin ; Li, Qi ; Liao, Chenyang ; Cao, Jingjing ; He, Shengfeng ; Yu, Yuanlong</creatorcontrib><description>Nighttime semantic segmentation is an important but challenging research problem for autonomous driving. The major challenges lie in the small objects or regions from the under-/over-exposed areas or suffer from motion blur caused by the camera deployed on moving vehicles. To resolve this, we propose a novel hard-class-aware module that bridges the main network for full-class segmentation and the hard-class network for segmenting aforementioned hard-class objects. In specific, it exploits the shared focus of hard-class objects from the dual-stream network, enabling the contextual information flow to guide the model to concentrate on the pixels that are hard to classify. In the end, the estimated hard-class segmentation results will be utilized to infer the final results via an adaptive probabilistic fusion refinement scheme. Moreover, to overcome over-smoothing and noise caused by extreme exposures, our model is modulated by a carefully crafted pretext task of constructing an exposure-aware semantic gradient map, which guides the model to faithfully perceive the structural and semantic information of hard-class objects while mitigating the negative impact of noises and uneven exposures. In experiments, we demonstrate that our unique network design leads to superior segmentation performance over existing methods, featuring the strong ability of perceiving hard-class objects under adverse conditions.</description><identifier>ISSN: 1551-6857</identifier><identifier>EISSN: 1551-6865</identifier><identifier>DOI: 10.1145/3650032</identifier><language>eng</language><publisher>New York, NY: ACM</publisher><subject>Computing methodologies ; Image segmentation ; Scene understanding</subject><ispartof>ACM transactions on multimedia computing communications and applications, 2024-05, Vol.20 (7), p.1-23, Article 213</ispartof><rights>Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-a239t-6f7e1b00bd0a5800287198fe3980b87240ebaaa9d63ac4ce47c138debdbc81563</cites><orcidid>0000-0002-3483-6100 ; 0000-0002-2112-6214 ; 0000-0002-3802-4644 ; 0009-0003-5697-1746 ; 0009-0000-7890-9220 ; 0000-0002-3630-6322 ; 0009-0002-7470-4193</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://dl.acm.org/doi/pdf/10.1145/3650032$$EPDF$$P50$$Gacm$$H</linktopdf><link.rule.ids>314,776,780,2276,27901,27902,40172,75970</link.rule.ids></links><search><creatorcontrib>Liu, Wenxi</creatorcontrib><creatorcontrib>Cai, Jiaxin</creatorcontrib><creatorcontrib>Li, Qi</creatorcontrib><creatorcontrib>Liao, Chenyang</creatorcontrib><creatorcontrib>Cao, Jingjing</creatorcontrib><creatorcontrib>He, Shengfeng</creatorcontrib><creatorcontrib>Yu, Yuanlong</creatorcontrib><title>Learning Nighttime Semantic Segmentation the Hard Way</title><title>ACM transactions on multimedia computing communications and applications</title><addtitle>ACM TOMM</addtitle><description>Nighttime semantic segmentation is an important but challenging research problem for autonomous driving. The major challenges lie in the small objects or regions from the under-/over-exposed areas or suffer from motion blur caused by the camera deployed on moving vehicles. To resolve this, we propose a novel hard-class-aware module that bridges the main network for full-class segmentation and the hard-class network for segmenting aforementioned hard-class objects. In specific, it exploits the shared focus of hard-class objects from the dual-stream network, enabling the contextual information flow to guide the model to concentrate on the pixels that are hard to classify. In the end, the estimated hard-class segmentation results will be utilized to infer the final results via an adaptive probabilistic fusion refinement scheme. Moreover, to overcome over-smoothing and noise caused by extreme exposures, our model is modulated by a carefully crafted pretext task of constructing an exposure-aware semantic gradient map, which guides the model to faithfully perceive the structural and semantic information of hard-class objects while mitigating the negative impact of noises and uneven exposures. In experiments, we demonstrate that our unique network design leads to superior segmentation performance over existing methods, featuring the strong ability of perceiving hard-class objects under adverse conditions.</description><subject>Computing methodologies</subject><subject>Image segmentation</subject><subject>Scene understanding</subject><issn>1551-6857</issn><issn>1551-6865</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNo9j8FLwzAYxYMoOKd495Sbp-qXpknTowzdhLIdVDyWL8nXLmI7SXPZf29lc6f3g_fjwWPsVsCDEIV6lFoByPyMzYRSItNGq_MTq_KSXY3j12RoVegZUzVhHMLQ8XXotimFnvgb9Tik4CboehoSprAbeNoSX2H0_BP31-yixe-Rbo45Zx8vz--LVVZvlq-LpzrDXFYp021JwgJYD6gMQG5KUZmWZGXAmjIvgCwiVl5LdIWjonRCGk_WW2eE0nLO7g-7Lu7GMVLb_MTQY9w3Apq_t83x7WTeHUx0_Un6L38Bl-NOKQ</recordid><startdate>20240516</startdate><enddate>20240516</enddate><creator>Liu, Wenxi</creator><creator>Cai, Jiaxin</creator><creator>Li, Qi</creator><creator>Liao, Chenyang</creator><creator>Cao, Jingjing</creator><creator>He, Shengfeng</creator><creator>Yu, Yuanlong</creator><general>ACM</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-3483-6100</orcidid><orcidid>https://orcid.org/0000-0002-2112-6214</orcidid><orcidid>https://orcid.org/0000-0002-3802-4644</orcidid><orcidid>https://orcid.org/0009-0003-5697-1746</orcidid><orcidid>https://orcid.org/0009-0000-7890-9220</orcidid><orcidid>https://orcid.org/0000-0002-3630-6322</orcidid><orcidid>https://orcid.org/0009-0002-7470-4193</orcidid></search><sort><creationdate>20240516</creationdate><title>Learning Nighttime Semantic Segmentation the Hard Way</title><author>Liu, Wenxi ; Cai, Jiaxin ; Li, Qi ; Liao, Chenyang ; Cao, Jingjing ; He, Shengfeng ; Yu, Yuanlong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a239t-6f7e1b00bd0a5800287198fe3980b87240ebaaa9d63ac4ce47c138debdbc81563</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Computing methodologies</topic><topic>Image segmentation</topic><topic>Scene understanding</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liu, Wenxi</creatorcontrib><creatorcontrib>Cai, Jiaxin</creatorcontrib><creatorcontrib>Li, Qi</creatorcontrib><creatorcontrib>Liao, Chenyang</creatorcontrib><creatorcontrib>Cao, Jingjing</creatorcontrib><creatorcontrib>He, Shengfeng</creatorcontrib><creatorcontrib>Yu, Yuanlong</creatorcontrib><collection>CrossRef</collection><jtitle>ACM transactions on multimedia computing communications and applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liu, Wenxi</au><au>Cai, Jiaxin</au><au>Li, Qi</au><au>Liao, Chenyang</au><au>Cao, Jingjing</au><au>He, Shengfeng</au><au>Yu, Yuanlong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Learning Nighttime Semantic Segmentation the Hard Way</atitle><jtitle>ACM transactions on multimedia computing communications and applications</jtitle><stitle>ACM TOMM</stitle><date>2024-05-16</date><risdate>2024</risdate><volume>20</volume><issue>7</issue><spage>1</spage><epage>23</epage><pages>1-23</pages><artnum>213</artnum><issn>1551-6857</issn><eissn>1551-6865</eissn><abstract>Nighttime semantic segmentation is an important but challenging research problem for autonomous driving. The major challenges lie in the small objects or regions from the under-/over-exposed areas or suffer from motion blur caused by the camera deployed on moving vehicles. To resolve this, we propose a novel hard-class-aware module that bridges the main network for full-class segmentation and the hard-class network for segmenting aforementioned hard-class objects. In specific, it exploits the shared focus of hard-class objects from the dual-stream network, enabling the contextual information flow to guide the model to concentrate on the pixels that are hard to classify. In the end, the estimated hard-class segmentation results will be utilized to infer the final results via an adaptive probabilistic fusion refinement scheme. Moreover, to overcome over-smoothing and noise caused by extreme exposures, our model is modulated by a carefully crafted pretext task of constructing an exposure-aware semantic gradient map, which guides the model to faithfully perceive the structural and semantic information of hard-class objects while mitigating the negative impact of noises and uneven exposures. In experiments, we demonstrate that our unique network design leads to superior segmentation performance over existing methods, featuring the strong ability of perceiving hard-class objects under adverse conditions.</abstract><cop>New York, NY</cop><pub>ACM</pub><doi>10.1145/3650032</doi><tpages>23</tpages><orcidid>https://orcid.org/0000-0002-3483-6100</orcidid><orcidid>https://orcid.org/0000-0002-2112-6214</orcidid><orcidid>https://orcid.org/0000-0002-3802-4644</orcidid><orcidid>https://orcid.org/0009-0003-5697-1746</orcidid><orcidid>https://orcid.org/0009-0000-7890-9220</orcidid><orcidid>https://orcid.org/0000-0002-3630-6322</orcidid><orcidid>https://orcid.org/0009-0002-7470-4193</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1551-6857
ispartof ACM transactions on multimedia computing communications and applications, 2024-05, Vol.20 (7), p.1-23, Article 213
issn 1551-6857
1551-6865
language eng
recordid cdi_crossref_primary_10_1145_3650032
source ACM Digital Library Complete
subjects Computing methodologies
Image segmentation
Scene understanding
title Learning Nighttime Semantic Segmentation the Hard Way
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-10T14%3A07%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-acm_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Learning%20Nighttime%20Semantic%20Segmentation%20the%20Hard%20Way&rft.jtitle=ACM%20transactions%20on%20multimedia%20computing%20communications%20and%20applications&rft.au=Liu,%20Wenxi&rft.date=2024-05-16&rft.volume=20&rft.issue=7&rft.spage=1&rft.epage=23&rft.pages=1-23&rft.artnum=213&rft.issn=1551-6857&rft.eissn=1551-6865&rft_id=info:doi/10.1145/3650032&rft_dat=%3Cacm_cross%3E3650032%3C/acm_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true