Scalable Spatio-temporal Top-k Interaction Queries on Dynamic Communities
Social media platforms generate massive amounts of data that reveal valuable insights about users and communities at large. Existing techniques have not fully exploited such data to help practitioners perform a deep analysis of large online communities. Lack of scalability hinders analyzing communit...
Gespeichert in:
Veröffentlicht in: | ACM transactions on spatial algorithms and systems 2024-03, Vol.10 (1), p.1-25, Article 6 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 25 |
---|---|
container_issue | 1 |
container_start_page | 1 |
container_title | ACM transactions on spatial algorithms and systems |
container_volume | 10 |
creator | Almaslukh, Abdulaziz Liu, Yongyi Magdy, Amr |
description | Social media platforms generate massive amounts of data that reveal valuable insights about users and communities at large. Existing techniques have not fully exploited such data to help practitioners perform a deep analysis of large online communities. Lack of scalability hinders analyzing communities of large sizes and requires tremendous system resources and unacceptable runtime. This article proposes a new analytical query that identifies the top-k posts that a given user community has interacted with during a specific time interval and within a spatial range. We propose a novel indexing framework that captures the interactions of users and communities to provide a low query latency. Moreover, we propose exact and approximate algorithms to process the query efficiently and utilize the index content to prune the search space. The extensive experimental evaluation on real data has shown the superiority of our techniques and their scalability to support large online communities. |
doi_str_mv | 10.1145/3648374 |
format | Article |
fullrecord | <record><control><sourceid>acm_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1145_3648374</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3648374</sourcerecordid><originalsourceid>FETCH-LOGICAL-a1544-a1263e4047b7eb6bf36cf94d1dada77eb98309b046b610de47ab6bbe6bb17f563</originalsourceid><addsrcrecordid>eNo9kL1rwzAQxUVpoSEN3Ttp6-RWsr7isbhfhkApSWdzks_g1rKN5Az576uSNMPdO977ccMj5JazB86lehRaroWRF2SRJ8mY0PzyfCtxTVYxfjPGuNK5MsWCVFsHPdge6XaCuRuzGf00BujpbpyyH1oNMwZwKRno5x5Dh5Gm8_kwgO8cLUfv90M3J_uGXLXQR1yddEm-Xl925Xu2-XiryqdNBlxJmXauBUomjTVotW2Fdm0hG95AAyZZxVqwwjKpreasQWkgURbTcNMqLZbk_vjXhTHGgG09hc5DONSc1X8l1KcSEnl3JMH5M_Qf_gI5c1a4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Scalable Spatio-temporal Top-k Interaction Queries on Dynamic Communities</title><source>ACM Digital Library Complete</source><creator>Almaslukh, Abdulaziz ; Liu, Yongyi ; Magdy, Amr</creator><creatorcontrib>Almaslukh, Abdulaziz ; Liu, Yongyi ; Magdy, Amr</creatorcontrib><description>Social media platforms generate massive amounts of data that reveal valuable insights about users and communities at large. Existing techniques have not fully exploited such data to help practitioners perform a deep analysis of large online communities. Lack of scalability hinders analyzing communities of large sizes and requires tremendous system resources and unacceptable runtime. This article proposes a new analytical query that identifies the top-k posts that a given user community has interacted with during a specific time interval and within a spatial range. We propose a novel indexing framework that captures the interactions of users and communities to provide a low query latency. Moreover, we propose exact and approximate algorithms to process the query efficiently and utilize the index content to prune the search space. The extensive experimental evaluation on real data has shown the superiority of our techniques and their scalability to support large online communities.</description><identifier>ISSN: 2374-0353</identifier><identifier>EISSN: 2374-0361</identifier><identifier>DOI: 10.1145/3648374</identifier><language>eng</language><publisher>New York, NY: ACM</publisher><subject>Information retrieval query processing ; Information systems</subject><ispartof>ACM transactions on spatial algorithms and systems, 2024-03, Vol.10 (1), p.1-25, Article 6</ispartof><rights>Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-a1544-a1263e4047b7eb6bf36cf94d1dada77eb98309b046b610de47ab6bbe6bb17f563</cites><orcidid>0000-0001-6345-9730 ; 0000-0001-8388-9156 ; 0000-0002-2147-5772</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://dl.acm.org/doi/pdf/10.1145/3648374$$EPDF$$P50$$Gacm$$H</linktopdf><link.rule.ids>314,777,781,2276,27905,27906,40177,75977</link.rule.ids></links><search><creatorcontrib>Almaslukh, Abdulaziz</creatorcontrib><creatorcontrib>Liu, Yongyi</creatorcontrib><creatorcontrib>Magdy, Amr</creatorcontrib><title>Scalable Spatio-temporal Top-k Interaction Queries on Dynamic Communities</title><title>ACM transactions on spatial algorithms and systems</title><addtitle>ACM TSAS</addtitle><description>Social media platforms generate massive amounts of data that reveal valuable insights about users and communities at large. Existing techniques have not fully exploited such data to help practitioners perform a deep analysis of large online communities. Lack of scalability hinders analyzing communities of large sizes and requires tremendous system resources and unacceptable runtime. This article proposes a new analytical query that identifies the top-k posts that a given user community has interacted with during a specific time interval and within a spatial range. We propose a novel indexing framework that captures the interactions of users and communities to provide a low query latency. Moreover, we propose exact and approximate algorithms to process the query efficiently and utilize the index content to prune the search space. The extensive experimental evaluation on real data has shown the superiority of our techniques and their scalability to support large online communities.</description><subject>Information retrieval query processing</subject><subject>Information systems</subject><issn>2374-0353</issn><issn>2374-0361</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNo9kL1rwzAQxUVpoSEN3Ttp6-RWsr7isbhfhkApSWdzks_g1rKN5Az576uSNMPdO977ccMj5JazB86lehRaroWRF2SRJ8mY0PzyfCtxTVYxfjPGuNK5MsWCVFsHPdge6XaCuRuzGf00BujpbpyyH1oNMwZwKRno5x5Dh5Gm8_kwgO8cLUfv90M3J_uGXLXQR1yddEm-Xl925Xu2-XiryqdNBlxJmXauBUomjTVotW2Fdm0hG95AAyZZxVqwwjKpreasQWkgURbTcNMqLZbk_vjXhTHGgG09hc5DONSc1X8l1KcSEnl3JMH5M_Qf_gI5c1a4</recordid><startdate>20240323</startdate><enddate>20240323</enddate><creator>Almaslukh, Abdulaziz</creator><creator>Liu, Yongyi</creator><creator>Magdy, Amr</creator><general>ACM</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0001-6345-9730</orcidid><orcidid>https://orcid.org/0000-0001-8388-9156</orcidid><orcidid>https://orcid.org/0000-0002-2147-5772</orcidid></search><sort><creationdate>20240323</creationdate><title>Scalable Spatio-temporal Top-k Interaction Queries on Dynamic Communities</title><author>Almaslukh, Abdulaziz ; Liu, Yongyi ; Magdy, Amr</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a1544-a1263e4047b7eb6bf36cf94d1dada77eb98309b046b610de47ab6bbe6bb17f563</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Information retrieval query processing</topic><topic>Information systems</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Almaslukh, Abdulaziz</creatorcontrib><creatorcontrib>Liu, Yongyi</creatorcontrib><creatorcontrib>Magdy, Amr</creatorcontrib><collection>CrossRef</collection><jtitle>ACM transactions on spatial algorithms and systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Almaslukh, Abdulaziz</au><au>Liu, Yongyi</au><au>Magdy, Amr</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Scalable Spatio-temporal Top-k Interaction Queries on Dynamic Communities</atitle><jtitle>ACM transactions on spatial algorithms and systems</jtitle><stitle>ACM TSAS</stitle><date>2024-03-23</date><risdate>2024</risdate><volume>10</volume><issue>1</issue><spage>1</spage><epage>25</epage><pages>1-25</pages><artnum>6</artnum><issn>2374-0353</issn><eissn>2374-0361</eissn><abstract>Social media platforms generate massive amounts of data that reveal valuable insights about users and communities at large. Existing techniques have not fully exploited such data to help practitioners perform a deep analysis of large online communities. Lack of scalability hinders analyzing communities of large sizes and requires tremendous system resources and unacceptable runtime. This article proposes a new analytical query that identifies the top-k posts that a given user community has interacted with during a specific time interval and within a spatial range. We propose a novel indexing framework that captures the interactions of users and communities to provide a low query latency. Moreover, we propose exact and approximate algorithms to process the query efficiently and utilize the index content to prune the search space. The extensive experimental evaluation on real data has shown the superiority of our techniques and their scalability to support large online communities.</abstract><cop>New York, NY</cop><pub>ACM</pub><doi>10.1145/3648374</doi><tpages>25</tpages><orcidid>https://orcid.org/0000-0001-6345-9730</orcidid><orcidid>https://orcid.org/0000-0001-8388-9156</orcidid><orcidid>https://orcid.org/0000-0002-2147-5772</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2374-0353 |
ispartof | ACM transactions on spatial algorithms and systems, 2024-03, Vol.10 (1), p.1-25, Article 6 |
issn | 2374-0353 2374-0361 |
language | eng |
recordid | cdi_crossref_primary_10_1145_3648374 |
source | ACM Digital Library Complete |
subjects | Information retrieval query processing Information systems |
title | Scalable Spatio-temporal Top-k Interaction Queries on Dynamic Communities |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T12%3A09%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-acm_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Scalable%20Spatio-temporal%20Top-k%20Interaction%20Queries%20on%20Dynamic%20Communities&rft.jtitle=ACM%20transactions%20on%20spatial%20algorithms%20and%20systems&rft.au=Almaslukh,%20Abdulaziz&rft.date=2024-03-23&rft.volume=10&rft.issue=1&rft.spage=1&rft.epage=25&rft.pages=1-25&rft.artnum=6&rft.issn=2374-0353&rft.eissn=2374-0361&rft_id=info:doi/10.1145/3648374&rft_dat=%3Cacm_cross%3E3648374%3C/acm_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |