NeuralVDB: High-resolution Sparse Volume Representation using Hierarchical Neural Networks

We introduce NeuralVDB, which improves on an existing industry standard for efficient storage of sparse volumetric data, denoted VDB [Museth 2013], by leveraging recent advancements in machine learning. Our novel hybrid data structure can reduce the memory footprints of VDB volumes by orders of magn...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACM transactions on graphics 2024-02, Vol.43 (2), p.1-21, Article 20
Hauptverfasser: Kim, Doyub, Lee, Minjae, Museth, Ken
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 21
container_issue 2
container_start_page 1
container_title ACM transactions on graphics
container_volume 43
creator Kim, Doyub
Lee, Minjae
Museth, Ken
description We introduce NeuralVDB, which improves on an existing industry standard for efficient storage of sparse volumetric data, denoted VDB [Museth 2013], by leveraging recent advancements in machine learning. Our novel hybrid data structure can reduce the memory footprints of VDB volumes by orders of magnitude, while maintaining its flexibility and only incurring small (user-controlled) compression errors. Specifically, NeuralVDB replaces the lower nodes of a shallow and wide VDB tree structure with multiple hierarchical neural networks that separately encode topology and value information by means of neural classifiers and regressors respectively. This approach is proven to maximize the compression ratio while maintaining the spatial adaptivity offered by the higher-level VDB data structure. For sparse signed distance fields and density volumes, we have observed compression ratios on the order of 10× to more than 100× from already compressed VDB inputs, with little to no visual artifacts. Furthermore, NeuralVDB is shown to offer more effective compression performance compared to other neural representations such as Neural Geometric Level of Detail [Takikawa et al. 2021], Variable Bitrate Neural Fields [Takikawa et al. 2022a], and Instant Neural Graphics Primitives [Müller et al. 2022]. Finally, we demonstrate how warm-starting from previous frames can accelerate training, i.e., compression, of animated volumes as well as improve temporal coherency of model inference, i.e., decompression.
doi_str_mv 10.1145/3641817
format Article
fullrecord <record><control><sourceid>acm_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1145_3641817</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3641817</sourcerecordid><originalsourceid>FETCH-LOGICAL-a277t-c33a033a0cd2c3c42800899644c3648fa04af8f22ac11e0ea50ef0e51485ddaa3</originalsourceid><addsrcrecordid>eNo9UMtOwzAQtBBIhIK4c8qNk2EdO4nLDVqgSBVIPHrgEq2cTRvIS3YixN_jksJhNVrN7Gh2GDsVcCGEii9looQW6R4LRBynPJWJ3mcBpBI4SBCH7Mi5DwBIlEoC9v5Ig8VqNb-5ChflesMtubYa-rJtwpcOraNw5feawmfqPEdNj7_k4Mpm7U_IojWb0mAVjlYe-q_WfrpjdlBg5ehkhxP2dnf7Olvw5dP9w-x6yTFK054bKRG2Y_LISKMiDaCnUx_P-Fd0gaCw0EUUoRGCgDAGKoBioXSc54hyws5HX2Nb5ywVWWfLGu13JiDbVpLtKvHKs1GJpv4X_ZE_hWdcQA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>NeuralVDB: High-resolution Sparse Volume Representation using Hierarchical Neural Networks</title><source>ACM Digital Library Complete</source><creator>Kim, Doyub ; Lee, Minjae ; Museth, Ken</creator><creatorcontrib>Kim, Doyub ; Lee, Minjae ; Museth, Ken</creatorcontrib><description>We introduce NeuralVDB, which improves on an existing industry standard for efficient storage of sparse volumetric data, denoted VDB [Museth 2013], by leveraging recent advancements in machine learning. Our novel hybrid data structure can reduce the memory footprints of VDB volumes by orders of magnitude, while maintaining its flexibility and only incurring small (user-controlled) compression errors. Specifically, NeuralVDB replaces the lower nodes of a shallow and wide VDB tree structure with multiple hierarchical neural networks that separately encode topology and value information by means of neural classifiers and regressors respectively. This approach is proven to maximize the compression ratio while maintaining the spatial adaptivity offered by the higher-level VDB data structure. For sparse signed distance fields and density volumes, we have observed compression ratios on the order of 10× to more than 100× from already compressed VDB inputs, with little to no visual artifacts. Furthermore, NeuralVDB is shown to offer more effective compression performance compared to other neural representations such as Neural Geometric Level of Detail [Takikawa et al. 2021], Variable Bitrate Neural Fields [Takikawa et al. 2022a], and Instant Neural Graphics Primitives [Müller et al. 2022]. Finally, we demonstrate how warm-starting from previous frames can accelerate training, i.e., compression, of animated volumes as well as improve temporal coherency of model inference, i.e., decompression.</description><identifier>ISSN: 0730-0301</identifier><identifier>EISSN: 1557-7368</identifier><identifier>DOI: 10.1145/3641817</identifier><language>eng</language><publisher>New York, NY: ACM</publisher><subject>Computing methodologies ; Volumetric models</subject><ispartof>ACM transactions on graphics, 2024-02, Vol.43 (2), p.1-21, Article 20</ispartof><rights>Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a277t-c33a033a0cd2c3c42800899644c3648fa04af8f22ac11e0ea50ef0e51485ddaa3</citedby><cites>FETCH-LOGICAL-a277t-c33a033a0cd2c3c42800899644c3648fa04af8f22ac11e0ea50ef0e51485ddaa3</cites><orcidid>0009-0003-6387-1081 ; 0000-0002-8932-5519 ; 0000-0002-9926-780X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://dl.acm.org/doi/pdf/10.1145/3641817$$EPDF$$P50$$Gacm$$Hfree_for_read</linktopdf><link.rule.ids>314,780,784,2282,27924,27925,40196,76228</link.rule.ids></links><search><creatorcontrib>Kim, Doyub</creatorcontrib><creatorcontrib>Lee, Minjae</creatorcontrib><creatorcontrib>Museth, Ken</creatorcontrib><title>NeuralVDB: High-resolution Sparse Volume Representation using Hierarchical Neural Networks</title><title>ACM transactions on graphics</title><addtitle>ACM TOG</addtitle><description>We introduce NeuralVDB, which improves on an existing industry standard for efficient storage of sparse volumetric data, denoted VDB [Museth 2013], by leveraging recent advancements in machine learning. Our novel hybrid data structure can reduce the memory footprints of VDB volumes by orders of magnitude, while maintaining its flexibility and only incurring small (user-controlled) compression errors. Specifically, NeuralVDB replaces the lower nodes of a shallow and wide VDB tree structure with multiple hierarchical neural networks that separately encode topology and value information by means of neural classifiers and regressors respectively. This approach is proven to maximize the compression ratio while maintaining the spatial adaptivity offered by the higher-level VDB data structure. For sparse signed distance fields and density volumes, we have observed compression ratios on the order of 10× to more than 100× from already compressed VDB inputs, with little to no visual artifacts. Furthermore, NeuralVDB is shown to offer more effective compression performance compared to other neural representations such as Neural Geometric Level of Detail [Takikawa et al. 2021], Variable Bitrate Neural Fields [Takikawa et al. 2022a], and Instant Neural Graphics Primitives [Müller et al. 2022]. Finally, we demonstrate how warm-starting from previous frames can accelerate training, i.e., compression, of animated volumes as well as improve temporal coherency of model inference, i.e., decompression.</description><subject>Computing methodologies</subject><subject>Volumetric models</subject><issn>0730-0301</issn><issn>1557-7368</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNo9UMtOwzAQtBBIhIK4c8qNk2EdO4nLDVqgSBVIPHrgEq2cTRvIS3YixN_jksJhNVrN7Gh2GDsVcCGEii9looQW6R4LRBynPJWJ3mcBpBI4SBCH7Mi5DwBIlEoC9v5Ig8VqNb-5ChflesMtubYa-rJtwpcOraNw5feawmfqPEdNj7_k4Mpm7U_IojWb0mAVjlYe-q_WfrpjdlBg5ehkhxP2dnf7Olvw5dP9w-x6yTFK054bKRG2Y_LISKMiDaCnUx_P-Fd0gaCw0EUUoRGCgDAGKoBioXSc54hyws5HX2Nb5ywVWWfLGu13JiDbVpLtKvHKs1GJpv4X_ZE_hWdcQA</recordid><startdate>20240228</startdate><enddate>20240228</enddate><creator>Kim, Doyub</creator><creator>Lee, Minjae</creator><creator>Museth, Ken</creator><general>ACM</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0009-0003-6387-1081</orcidid><orcidid>https://orcid.org/0000-0002-8932-5519</orcidid><orcidid>https://orcid.org/0000-0002-9926-780X</orcidid></search><sort><creationdate>20240228</creationdate><title>NeuralVDB: High-resolution Sparse Volume Representation using Hierarchical Neural Networks</title><author>Kim, Doyub ; Lee, Minjae ; Museth, Ken</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a277t-c33a033a0cd2c3c42800899644c3648fa04af8f22ac11e0ea50ef0e51485ddaa3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Computing methodologies</topic><topic>Volumetric models</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kim, Doyub</creatorcontrib><creatorcontrib>Lee, Minjae</creatorcontrib><creatorcontrib>Museth, Ken</creatorcontrib><collection>CrossRef</collection><jtitle>ACM transactions on graphics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kim, Doyub</au><au>Lee, Minjae</au><au>Museth, Ken</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>NeuralVDB: High-resolution Sparse Volume Representation using Hierarchical Neural Networks</atitle><jtitle>ACM transactions on graphics</jtitle><stitle>ACM TOG</stitle><date>2024-02-28</date><risdate>2024</risdate><volume>43</volume><issue>2</issue><spage>1</spage><epage>21</epage><pages>1-21</pages><artnum>20</artnum><issn>0730-0301</issn><eissn>1557-7368</eissn><abstract>We introduce NeuralVDB, which improves on an existing industry standard for efficient storage of sparse volumetric data, denoted VDB [Museth 2013], by leveraging recent advancements in machine learning. Our novel hybrid data structure can reduce the memory footprints of VDB volumes by orders of magnitude, while maintaining its flexibility and only incurring small (user-controlled) compression errors. Specifically, NeuralVDB replaces the lower nodes of a shallow and wide VDB tree structure with multiple hierarchical neural networks that separately encode topology and value information by means of neural classifiers and regressors respectively. This approach is proven to maximize the compression ratio while maintaining the spatial adaptivity offered by the higher-level VDB data structure. For sparse signed distance fields and density volumes, we have observed compression ratios on the order of 10× to more than 100× from already compressed VDB inputs, with little to no visual artifacts. Furthermore, NeuralVDB is shown to offer more effective compression performance compared to other neural representations such as Neural Geometric Level of Detail [Takikawa et al. 2021], Variable Bitrate Neural Fields [Takikawa et al. 2022a], and Instant Neural Graphics Primitives [Müller et al. 2022]. Finally, we demonstrate how warm-starting from previous frames can accelerate training, i.e., compression, of animated volumes as well as improve temporal coherency of model inference, i.e., decompression.</abstract><cop>New York, NY</cop><pub>ACM</pub><doi>10.1145/3641817</doi><tpages>21</tpages><orcidid>https://orcid.org/0009-0003-6387-1081</orcidid><orcidid>https://orcid.org/0000-0002-8932-5519</orcidid><orcidid>https://orcid.org/0000-0002-9926-780X</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0730-0301
ispartof ACM transactions on graphics, 2024-02, Vol.43 (2), p.1-21, Article 20
issn 0730-0301
1557-7368
language eng
recordid cdi_crossref_primary_10_1145_3641817
source ACM Digital Library Complete
subjects Computing methodologies
Volumetric models
title NeuralVDB: High-resolution Sparse Volume Representation using Hierarchical Neural Networks
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T08%3A18%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-acm_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=NeuralVDB:%20High-resolution%20Sparse%20Volume%20Representation%20using%20Hierarchical%20Neural%20Networks&rft.jtitle=ACM%20transactions%20on%20graphics&rft.au=Kim,%20Doyub&rft.date=2024-02-28&rft.volume=43&rft.issue=2&rft.spage=1&rft.epage=21&rft.pages=1-21&rft.artnum=20&rft.issn=0730-0301&rft.eissn=1557-7368&rft_id=info:doi/10.1145/3641817&rft_dat=%3Cacm_cross%3E3641817%3C/acm_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true