Privacy and Integrity Protection for IoT Multimodal Data Using Machine Learning and Blockchain

With the wide application of Internet of Things (IoT) technology, large volumes of multimodal data are collected and analyzed for various diagnoses, analyses, and predictions to help in decision-making and management. However, the research on protecting data integrity and privacy is quite limited, w...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACM transactions on multimedia computing communications and applications 2024-03, Vol.20 (6), p.1-18, Article 153
Hauptverfasser: Liu, Qingzhi, Huang, Yuchen, Jin, Chenglu, Zhou, Xiaohan, Mao, Ying, Catal, Cagatay, Cheng, Long
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 18
container_issue 6
container_start_page 1
container_title ACM transactions on multimedia computing communications and applications
container_volume 20
creator Liu, Qingzhi
Huang, Yuchen
Jin, Chenglu
Zhou, Xiaohan
Mao, Ying
Catal, Cagatay
Cheng, Long
description With the wide application of Internet of Things (IoT) technology, large volumes of multimodal data are collected and analyzed for various diagnoses, analyses, and predictions to help in decision-making and management. However, the research on protecting data integrity and privacy is quite limited, while the lack of proper protection for sensitive data may have significant impacts on the benefits and gains of data owners. In this research, we propose a protection solution for data integrity and privacy. Specifically, our system protects data integrity through distributed systems and blockchain technology. Meanwhile, our system guarantees data privacy using differential privacy and Machine Learning (ML) techniques. Our system aims to maintain the usability of the data for further data analytical tasks of data users, while encrypting the data according to the requirements of data owners. We implement our solution with smart contracts, distributed file systems, and ML models. The experimental results show that our proposed solution can effectively encrypt source IoT data according to the requirements of data users while data integrity can be protected under the blockchain.
doi_str_mv 10.1145/3638769
format Article
fullrecord <record><control><sourceid>acm_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1145_3638769</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3638769</sourcerecordid><originalsourceid>FETCH-LOGICAL-a277t-e00e5ccf261b7d03f4bcf321f9e8ed62d389cb36f368f7defcc8636e6e07c0963</originalsourceid><addsrcrecordid>eNo9kDFPwzAUhC0EEqUgdiZvTAE7jp-TEUqBSq3o0K5EzovdGlIbOQap_x6qlk53uvt0wxFyzdkd54W8FyBKBdUJGXApeQYlyNOjl-qcXPT9B2MCZAED8j6P7kfjlmrf0olPZhVd2tJ5DMlgcsFTGyKdhAWdfXfJbUKrO_qkk6bL3vkVnWlcO2_o1Ojod8Fu57EL-Ilr7fwlObO6683VQYdk-TxejF6z6dvLZPQwzXSuVMoMY0Yi2hx4o1ombNGgFTm3lSlNC3krygobAVZAaVVrLGIJAgwYppBVIIbkdr-LMfR9NLb-im6j47bmrN7dUh9u-SNv9qTGzRH6L38BJH1d1g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Privacy and Integrity Protection for IoT Multimodal Data Using Machine Learning and Blockchain</title><source>ACM Digital Library Complete</source><creator>Liu, Qingzhi ; Huang, Yuchen ; Jin, Chenglu ; Zhou, Xiaohan ; Mao, Ying ; Catal, Cagatay ; Cheng, Long</creator><creatorcontrib>Liu, Qingzhi ; Huang, Yuchen ; Jin, Chenglu ; Zhou, Xiaohan ; Mao, Ying ; Catal, Cagatay ; Cheng, Long</creatorcontrib><description>With the wide application of Internet of Things (IoT) technology, large volumes of multimodal data are collected and analyzed for various diagnoses, analyses, and predictions to help in decision-making and management. However, the research on protecting data integrity and privacy is quite limited, while the lack of proper protection for sensitive data may have significant impacts on the benefits and gains of data owners. In this research, we propose a protection solution for data integrity and privacy. Specifically, our system protects data integrity through distributed systems and blockchain technology. Meanwhile, our system guarantees data privacy using differential privacy and Machine Learning (ML) techniques. Our system aims to maintain the usability of the data for further data analytical tasks of data users, while encrypting the data according to the requirements of data owners. We implement our solution with smart contracts, distributed file systems, and ML models. The experimental results show that our proposed solution can effectively encrypt source IoT data according to the requirements of data users while data integrity can be protected under the blockchain.</description><identifier>ISSN: 1551-6857</identifier><identifier>EISSN: 1551-6865</identifier><identifier>DOI: 10.1145/3638769</identifier><language>eng</language><publisher>New York, NY: ACM</publisher><subject>Privacy protections ; Security and privacy</subject><ispartof>ACM transactions on multimedia computing communications and applications, 2024-03, Vol.20 (6), p.1-18, Article 153</ispartof><rights>Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a277t-e00e5ccf261b7d03f4bcf321f9e8ed62d389cb36f368f7defcc8636e6e07c0963</citedby><cites>FETCH-LOGICAL-a277t-e00e5ccf261b7d03f4bcf321f9e8ed62d389cb36f368f7defcc8636e6e07c0963</cites><orcidid>0009-0008-9871-5851 ; 0000-0003-0462-0330 ; 0000-0003-0959-2930 ; 0000-0003-1638-059X ; 0000-0002-4484-4892 ; 0000-0003-2621-9222 ; 0000-0001-6306-8019</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://dl.acm.org/doi/pdf/10.1145/3638769$$EPDF$$P50$$Gacm$$H</linktopdf><link.rule.ids>314,780,784,2282,27924,27925,40196,76228</link.rule.ids></links><search><creatorcontrib>Liu, Qingzhi</creatorcontrib><creatorcontrib>Huang, Yuchen</creatorcontrib><creatorcontrib>Jin, Chenglu</creatorcontrib><creatorcontrib>Zhou, Xiaohan</creatorcontrib><creatorcontrib>Mao, Ying</creatorcontrib><creatorcontrib>Catal, Cagatay</creatorcontrib><creatorcontrib>Cheng, Long</creatorcontrib><title>Privacy and Integrity Protection for IoT Multimodal Data Using Machine Learning and Blockchain</title><title>ACM transactions on multimedia computing communications and applications</title><addtitle>ACM TOMM</addtitle><description>With the wide application of Internet of Things (IoT) technology, large volumes of multimodal data are collected and analyzed for various diagnoses, analyses, and predictions to help in decision-making and management. However, the research on protecting data integrity and privacy is quite limited, while the lack of proper protection for sensitive data may have significant impacts on the benefits and gains of data owners. In this research, we propose a protection solution for data integrity and privacy. Specifically, our system protects data integrity through distributed systems and blockchain technology. Meanwhile, our system guarantees data privacy using differential privacy and Machine Learning (ML) techniques. Our system aims to maintain the usability of the data for further data analytical tasks of data users, while encrypting the data according to the requirements of data owners. We implement our solution with smart contracts, distributed file systems, and ML models. The experimental results show that our proposed solution can effectively encrypt source IoT data according to the requirements of data users while data integrity can be protected under the blockchain.</description><subject>Privacy protections</subject><subject>Security and privacy</subject><issn>1551-6857</issn><issn>1551-6865</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNo9kDFPwzAUhC0EEqUgdiZvTAE7jp-TEUqBSq3o0K5EzovdGlIbOQap_x6qlk53uvt0wxFyzdkd54W8FyBKBdUJGXApeQYlyNOjl-qcXPT9B2MCZAED8j6P7kfjlmrf0olPZhVd2tJ5DMlgcsFTGyKdhAWdfXfJbUKrO_qkk6bL3vkVnWlcO2_o1Ojod8Fu57EL-Ilr7fwlObO6683VQYdk-TxejF6z6dvLZPQwzXSuVMoMY0Yi2hx4o1ombNGgFTm3lSlNC3krygobAVZAaVVrLGIJAgwYppBVIIbkdr-LMfR9NLb-im6j47bmrN7dUh9u-SNv9qTGzRH6L38BJH1d1g</recordid><startdate>20240308</startdate><enddate>20240308</enddate><creator>Liu, Qingzhi</creator><creator>Huang, Yuchen</creator><creator>Jin, Chenglu</creator><creator>Zhou, Xiaohan</creator><creator>Mao, Ying</creator><creator>Catal, Cagatay</creator><creator>Cheng, Long</creator><general>ACM</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0009-0008-9871-5851</orcidid><orcidid>https://orcid.org/0000-0003-0462-0330</orcidid><orcidid>https://orcid.org/0000-0003-0959-2930</orcidid><orcidid>https://orcid.org/0000-0003-1638-059X</orcidid><orcidid>https://orcid.org/0000-0002-4484-4892</orcidid><orcidid>https://orcid.org/0000-0003-2621-9222</orcidid><orcidid>https://orcid.org/0000-0001-6306-8019</orcidid></search><sort><creationdate>20240308</creationdate><title>Privacy and Integrity Protection for IoT Multimodal Data Using Machine Learning and Blockchain</title><author>Liu, Qingzhi ; Huang, Yuchen ; Jin, Chenglu ; Zhou, Xiaohan ; Mao, Ying ; Catal, Cagatay ; Cheng, Long</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a277t-e00e5ccf261b7d03f4bcf321f9e8ed62d389cb36f368f7defcc8636e6e07c0963</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Privacy protections</topic><topic>Security and privacy</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liu, Qingzhi</creatorcontrib><creatorcontrib>Huang, Yuchen</creatorcontrib><creatorcontrib>Jin, Chenglu</creatorcontrib><creatorcontrib>Zhou, Xiaohan</creatorcontrib><creatorcontrib>Mao, Ying</creatorcontrib><creatorcontrib>Catal, Cagatay</creatorcontrib><creatorcontrib>Cheng, Long</creatorcontrib><collection>CrossRef</collection><jtitle>ACM transactions on multimedia computing communications and applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liu, Qingzhi</au><au>Huang, Yuchen</au><au>Jin, Chenglu</au><au>Zhou, Xiaohan</au><au>Mao, Ying</au><au>Catal, Cagatay</au><au>Cheng, Long</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Privacy and Integrity Protection for IoT Multimodal Data Using Machine Learning and Blockchain</atitle><jtitle>ACM transactions on multimedia computing communications and applications</jtitle><stitle>ACM TOMM</stitle><date>2024-03-08</date><risdate>2024</risdate><volume>20</volume><issue>6</issue><spage>1</spage><epage>18</epage><pages>1-18</pages><artnum>153</artnum><issn>1551-6857</issn><eissn>1551-6865</eissn><abstract>With the wide application of Internet of Things (IoT) technology, large volumes of multimodal data are collected and analyzed for various diagnoses, analyses, and predictions to help in decision-making and management. However, the research on protecting data integrity and privacy is quite limited, while the lack of proper protection for sensitive data may have significant impacts on the benefits and gains of data owners. In this research, we propose a protection solution for data integrity and privacy. Specifically, our system protects data integrity through distributed systems and blockchain technology. Meanwhile, our system guarantees data privacy using differential privacy and Machine Learning (ML) techniques. Our system aims to maintain the usability of the data for further data analytical tasks of data users, while encrypting the data according to the requirements of data owners. We implement our solution with smart contracts, distributed file systems, and ML models. The experimental results show that our proposed solution can effectively encrypt source IoT data according to the requirements of data users while data integrity can be protected under the blockchain.</abstract><cop>New York, NY</cop><pub>ACM</pub><doi>10.1145/3638769</doi><tpages>18</tpages><orcidid>https://orcid.org/0009-0008-9871-5851</orcidid><orcidid>https://orcid.org/0000-0003-0462-0330</orcidid><orcidid>https://orcid.org/0000-0003-0959-2930</orcidid><orcidid>https://orcid.org/0000-0003-1638-059X</orcidid><orcidid>https://orcid.org/0000-0002-4484-4892</orcidid><orcidid>https://orcid.org/0000-0003-2621-9222</orcidid><orcidid>https://orcid.org/0000-0001-6306-8019</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1551-6857
ispartof ACM transactions on multimedia computing communications and applications, 2024-03, Vol.20 (6), p.1-18, Article 153
issn 1551-6857
1551-6865
language eng
recordid cdi_crossref_primary_10_1145_3638769
source ACM Digital Library Complete
subjects Privacy protections
Security and privacy
title Privacy and Integrity Protection for IoT Multimodal Data Using Machine Learning and Blockchain
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-18T21%3A03%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-acm_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Privacy%20and%20Integrity%20Protection%20for%20IoT%20Multimodal%20Data%20Using%20Machine%20Learning%20and%20Blockchain&rft.jtitle=ACM%20transactions%20on%20multimedia%20computing%20communications%20and%20applications&rft.au=Liu,%20Qingzhi&rft.date=2024-03-08&rft.volume=20&rft.issue=6&rft.spage=1&rft.epage=18&rft.pages=1-18&rft.artnum=153&rft.issn=1551-6857&rft.eissn=1551-6865&rft_id=info:doi/10.1145/3638769&rft_dat=%3Cacm_cross%3E3638769%3C/acm_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true