Privacy and Integrity Protection for IoT Multimodal Data Using Machine Learning and Blockchain
With the wide application of Internet of Things (IoT) technology, large volumes of multimodal data are collected and analyzed for various diagnoses, analyses, and predictions to help in decision-making and management. However, the research on protecting data integrity and privacy is quite limited, w...
Gespeichert in:
Veröffentlicht in: | ACM transactions on multimedia computing communications and applications 2024-03, Vol.20 (6), p.1-18, Article 153 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 18 |
---|---|
container_issue | 6 |
container_start_page | 1 |
container_title | ACM transactions on multimedia computing communications and applications |
container_volume | 20 |
creator | Liu, Qingzhi Huang, Yuchen Jin, Chenglu Zhou, Xiaohan Mao, Ying Catal, Cagatay Cheng, Long |
description | With the wide application of Internet of Things (IoT) technology, large volumes of multimodal data are collected and analyzed for various diagnoses, analyses, and predictions to help in decision-making and management. However, the research on protecting data integrity and privacy is quite limited, while the lack of proper protection for sensitive data may have significant impacts on the benefits and gains of data owners. In this research, we propose a protection solution for data integrity and privacy. Specifically, our system protects data integrity through distributed systems and blockchain technology. Meanwhile, our system guarantees data privacy using differential privacy and Machine Learning (ML) techniques. Our system aims to maintain the usability of the data for further data analytical tasks of data users, while encrypting the data according to the requirements of data owners. We implement our solution with smart contracts, distributed file systems, and ML models. The experimental results show that our proposed solution can effectively encrypt source IoT data according to the requirements of data users while data integrity can be protected under the blockchain. |
doi_str_mv | 10.1145/3638769 |
format | Article |
fullrecord | <record><control><sourceid>acm_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1145_3638769</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3638769</sourcerecordid><originalsourceid>FETCH-LOGICAL-a277t-e00e5ccf261b7d03f4bcf321f9e8ed62d389cb36f368f7defcc8636e6e07c0963</originalsourceid><addsrcrecordid>eNo9kDFPwzAUhC0EEqUgdiZvTAE7jp-TEUqBSq3o0K5EzovdGlIbOQap_x6qlk53uvt0wxFyzdkd54W8FyBKBdUJGXApeQYlyNOjl-qcXPT9B2MCZAED8j6P7kfjlmrf0olPZhVd2tJ5DMlgcsFTGyKdhAWdfXfJbUKrO_qkk6bL3vkVnWlcO2_o1Ojod8Fu57EL-Ilr7fwlObO6683VQYdk-TxejF6z6dvLZPQwzXSuVMoMY0Yi2hx4o1ombNGgFTm3lSlNC3krygobAVZAaVVrLGIJAgwYppBVIIbkdr-LMfR9NLb-im6j47bmrN7dUh9u-SNv9qTGzRH6L38BJH1d1g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Privacy and Integrity Protection for IoT Multimodal Data Using Machine Learning and Blockchain</title><source>ACM Digital Library Complete</source><creator>Liu, Qingzhi ; Huang, Yuchen ; Jin, Chenglu ; Zhou, Xiaohan ; Mao, Ying ; Catal, Cagatay ; Cheng, Long</creator><creatorcontrib>Liu, Qingzhi ; Huang, Yuchen ; Jin, Chenglu ; Zhou, Xiaohan ; Mao, Ying ; Catal, Cagatay ; Cheng, Long</creatorcontrib><description>With the wide application of Internet of Things (IoT) technology, large volumes of multimodal data are collected and analyzed for various diagnoses, analyses, and predictions to help in decision-making and management. However, the research on protecting data integrity and privacy is quite limited, while the lack of proper protection for sensitive data may have significant impacts on the benefits and gains of data owners. In this research, we propose a protection solution for data integrity and privacy. Specifically, our system protects data integrity through distributed systems and blockchain technology. Meanwhile, our system guarantees data privacy using differential privacy and Machine Learning (ML) techniques. Our system aims to maintain the usability of the data for further data analytical tasks of data users, while encrypting the data according to the requirements of data owners. We implement our solution with smart contracts, distributed file systems, and ML models. The experimental results show that our proposed solution can effectively encrypt source IoT data according to the requirements of data users while data integrity can be protected under the blockchain.</description><identifier>ISSN: 1551-6857</identifier><identifier>EISSN: 1551-6865</identifier><identifier>DOI: 10.1145/3638769</identifier><language>eng</language><publisher>New York, NY: ACM</publisher><subject>Privacy protections ; Security and privacy</subject><ispartof>ACM transactions on multimedia computing communications and applications, 2024-03, Vol.20 (6), p.1-18, Article 153</ispartof><rights>Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a277t-e00e5ccf261b7d03f4bcf321f9e8ed62d389cb36f368f7defcc8636e6e07c0963</citedby><cites>FETCH-LOGICAL-a277t-e00e5ccf261b7d03f4bcf321f9e8ed62d389cb36f368f7defcc8636e6e07c0963</cites><orcidid>0009-0008-9871-5851 ; 0000-0003-0462-0330 ; 0000-0003-0959-2930 ; 0000-0003-1638-059X ; 0000-0002-4484-4892 ; 0000-0003-2621-9222 ; 0000-0001-6306-8019</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://dl.acm.org/doi/pdf/10.1145/3638769$$EPDF$$P50$$Gacm$$H</linktopdf><link.rule.ids>314,780,784,2282,27924,27925,40196,76228</link.rule.ids></links><search><creatorcontrib>Liu, Qingzhi</creatorcontrib><creatorcontrib>Huang, Yuchen</creatorcontrib><creatorcontrib>Jin, Chenglu</creatorcontrib><creatorcontrib>Zhou, Xiaohan</creatorcontrib><creatorcontrib>Mao, Ying</creatorcontrib><creatorcontrib>Catal, Cagatay</creatorcontrib><creatorcontrib>Cheng, Long</creatorcontrib><title>Privacy and Integrity Protection for IoT Multimodal Data Using Machine Learning and Blockchain</title><title>ACM transactions on multimedia computing communications and applications</title><addtitle>ACM TOMM</addtitle><description>With the wide application of Internet of Things (IoT) technology, large volumes of multimodal data are collected and analyzed for various diagnoses, analyses, and predictions to help in decision-making and management. However, the research on protecting data integrity and privacy is quite limited, while the lack of proper protection for sensitive data may have significant impacts on the benefits and gains of data owners. In this research, we propose a protection solution for data integrity and privacy. Specifically, our system protects data integrity through distributed systems and blockchain technology. Meanwhile, our system guarantees data privacy using differential privacy and Machine Learning (ML) techniques. Our system aims to maintain the usability of the data for further data analytical tasks of data users, while encrypting the data according to the requirements of data owners. We implement our solution with smart contracts, distributed file systems, and ML models. The experimental results show that our proposed solution can effectively encrypt source IoT data according to the requirements of data users while data integrity can be protected under the blockchain.</description><subject>Privacy protections</subject><subject>Security and privacy</subject><issn>1551-6857</issn><issn>1551-6865</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNo9kDFPwzAUhC0EEqUgdiZvTAE7jp-TEUqBSq3o0K5EzovdGlIbOQap_x6qlk53uvt0wxFyzdkd54W8FyBKBdUJGXApeQYlyNOjl-qcXPT9B2MCZAED8j6P7kfjlmrf0olPZhVd2tJ5DMlgcsFTGyKdhAWdfXfJbUKrO_qkk6bL3vkVnWlcO2_o1Ojod8Fu57EL-Ilr7fwlObO6683VQYdk-TxejF6z6dvLZPQwzXSuVMoMY0Yi2hx4o1ombNGgFTm3lSlNC3krygobAVZAaVVrLGIJAgwYppBVIIbkdr-LMfR9NLb-im6j47bmrN7dUh9u-SNv9qTGzRH6L38BJH1d1g</recordid><startdate>20240308</startdate><enddate>20240308</enddate><creator>Liu, Qingzhi</creator><creator>Huang, Yuchen</creator><creator>Jin, Chenglu</creator><creator>Zhou, Xiaohan</creator><creator>Mao, Ying</creator><creator>Catal, Cagatay</creator><creator>Cheng, Long</creator><general>ACM</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0009-0008-9871-5851</orcidid><orcidid>https://orcid.org/0000-0003-0462-0330</orcidid><orcidid>https://orcid.org/0000-0003-0959-2930</orcidid><orcidid>https://orcid.org/0000-0003-1638-059X</orcidid><orcidid>https://orcid.org/0000-0002-4484-4892</orcidid><orcidid>https://orcid.org/0000-0003-2621-9222</orcidid><orcidid>https://orcid.org/0000-0001-6306-8019</orcidid></search><sort><creationdate>20240308</creationdate><title>Privacy and Integrity Protection for IoT Multimodal Data Using Machine Learning and Blockchain</title><author>Liu, Qingzhi ; Huang, Yuchen ; Jin, Chenglu ; Zhou, Xiaohan ; Mao, Ying ; Catal, Cagatay ; Cheng, Long</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a277t-e00e5ccf261b7d03f4bcf321f9e8ed62d389cb36f368f7defcc8636e6e07c0963</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Privacy protections</topic><topic>Security and privacy</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liu, Qingzhi</creatorcontrib><creatorcontrib>Huang, Yuchen</creatorcontrib><creatorcontrib>Jin, Chenglu</creatorcontrib><creatorcontrib>Zhou, Xiaohan</creatorcontrib><creatorcontrib>Mao, Ying</creatorcontrib><creatorcontrib>Catal, Cagatay</creatorcontrib><creatorcontrib>Cheng, Long</creatorcontrib><collection>CrossRef</collection><jtitle>ACM transactions on multimedia computing communications and applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liu, Qingzhi</au><au>Huang, Yuchen</au><au>Jin, Chenglu</au><au>Zhou, Xiaohan</au><au>Mao, Ying</au><au>Catal, Cagatay</au><au>Cheng, Long</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Privacy and Integrity Protection for IoT Multimodal Data Using Machine Learning and Blockchain</atitle><jtitle>ACM transactions on multimedia computing communications and applications</jtitle><stitle>ACM TOMM</stitle><date>2024-03-08</date><risdate>2024</risdate><volume>20</volume><issue>6</issue><spage>1</spage><epage>18</epage><pages>1-18</pages><artnum>153</artnum><issn>1551-6857</issn><eissn>1551-6865</eissn><abstract>With the wide application of Internet of Things (IoT) technology, large volumes of multimodal data are collected and analyzed for various diagnoses, analyses, and predictions to help in decision-making and management. However, the research on protecting data integrity and privacy is quite limited, while the lack of proper protection for sensitive data may have significant impacts on the benefits and gains of data owners. In this research, we propose a protection solution for data integrity and privacy. Specifically, our system protects data integrity through distributed systems and blockchain technology. Meanwhile, our system guarantees data privacy using differential privacy and Machine Learning (ML) techniques. Our system aims to maintain the usability of the data for further data analytical tasks of data users, while encrypting the data according to the requirements of data owners. We implement our solution with smart contracts, distributed file systems, and ML models. The experimental results show that our proposed solution can effectively encrypt source IoT data according to the requirements of data users while data integrity can be protected under the blockchain.</abstract><cop>New York, NY</cop><pub>ACM</pub><doi>10.1145/3638769</doi><tpages>18</tpages><orcidid>https://orcid.org/0009-0008-9871-5851</orcidid><orcidid>https://orcid.org/0000-0003-0462-0330</orcidid><orcidid>https://orcid.org/0000-0003-0959-2930</orcidid><orcidid>https://orcid.org/0000-0003-1638-059X</orcidid><orcidid>https://orcid.org/0000-0002-4484-4892</orcidid><orcidid>https://orcid.org/0000-0003-2621-9222</orcidid><orcidid>https://orcid.org/0000-0001-6306-8019</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1551-6857 |
ispartof | ACM transactions on multimedia computing communications and applications, 2024-03, Vol.20 (6), p.1-18, Article 153 |
issn | 1551-6857 1551-6865 |
language | eng |
recordid | cdi_crossref_primary_10_1145_3638769 |
source | ACM Digital Library Complete |
subjects | Privacy protections Security and privacy |
title | Privacy and Integrity Protection for IoT Multimodal Data Using Machine Learning and Blockchain |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-18T21%3A03%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-acm_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Privacy%20and%20Integrity%20Protection%20for%20IoT%20Multimodal%20Data%20Using%20Machine%20Learning%20and%20Blockchain&rft.jtitle=ACM%20transactions%20on%20multimedia%20computing%20communications%20and%20applications&rft.au=Liu,%20Qingzhi&rft.date=2024-03-08&rft.volume=20&rft.issue=6&rft.spage=1&rft.epage=18&rft.pages=1-18&rft.artnum=153&rft.issn=1551-6857&rft.eissn=1551-6865&rft_id=info:doi/10.1145/3638769&rft_dat=%3Cacm_cross%3E3638769%3C/acm_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |