The Keiper-Li Criterion for the Riemann Hypothesis and Generalized Lambert Functions

Keiper [1] and Li [2] published independent investigations of the connection between the Riemann hypothesis and the properties of sums over powers of zeros of the Riemann zeta function. Here we consider a reframing of the criterion, to work with higher-order derivatives ξr of the symmetrized functio...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACM communications in computer algebra 2023-12, Vol.57 (3), p.85-110
Hauptverfasser: McPhedran, Ross, Scott, Tony C., Maignan, Aude
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 110
container_issue 3
container_start_page 85
container_title ACM communications in computer algebra
container_volume 57
creator McPhedran, Ross
Scott, Tony C.
Maignan, Aude
description Keiper [1] and Li [2] published independent investigations of the connection between the Riemann hypothesis and the properties of sums over powers of zeros of the Riemann zeta function. Here we consider a reframing of the criterion, to work with higher-order derivatives ξr of the symmetrized function ξ(s) at s = 1/2, with all ξr known to be positive. The reframed criterion requires knowledge of the asymptotic properties of two terms, one being an infinite sum over the ξr. This is studied using known asymptotic expansions for the ξr, which give the location of the summand as a relationship between two parameters. This relationship needs to be inverted, which we show can be done exactly using a generalized Lambert function. The result enables an accurate asymptotic expression for the value of the infinite sum.
doi_str_mv 10.1145/3637529.3637530
format Article
fullrecord <record><control><sourceid>acm_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1145_3637529_3637530</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3637530</sourcerecordid><originalsourceid>FETCH-LOGICAL-a214t-196aa0373b81537649d7c7f12974e566a9c2823e16b2f0b74067df2093683a43</originalsourceid><addsrcrecordid>eNpNkE1Lw0AQhhdRsFbPgqf9A2n3K7vZowTbigFBcg-TZBZXmqTsxkP99UYbi6d3hneeOTyE3HO24lyla6mlSYVd_aZkF2TBrRSJEIpd_puvyU2MH4ypjNtsQcryHekL-gOGpPA0D37E4IeeuiHQcerePHbQ93R3PAzTHn2k0Ld0iz0G2PsvbGkBXY1hpJvPvhknNt6SKwf7iHdzLkm5eSrzXVK8bp_zxyIBwdWYcKsBmDSyzngqjVa2NY1xXFijMNUabCMyIZHrWjhWG8W0aZ1gVupMgpJLsj69bcIQY0BXHYLvIBwrzqofJ9XspJqdTMTDiYCmOx__ld9Oo1sN</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>The Keiper-Li Criterion for the Riemann Hypothesis and Generalized Lambert Functions</title><source>Access via ACM Digital Library</source><creator>McPhedran, Ross ; Scott, Tony C. ; Maignan, Aude</creator><creatorcontrib>McPhedran, Ross ; Scott, Tony C. ; Maignan, Aude</creatorcontrib><description>Keiper [1] and Li [2] published independent investigations of the connection between the Riemann hypothesis and the properties of sums over powers of zeros of the Riemann zeta function. Here we consider a reframing of the criterion, to work with higher-order derivatives ξr of the symmetrized function ξ(s) at s = 1/2, with all ξr known to be positive. The reframed criterion requires knowledge of the asymptotic properties of two terms, one being an infinite sum over the ξr. This is studied using known asymptotic expansions for the ξr, which give the location of the summand as a relationship between two parameters. This relationship needs to be inverted, which we show can be done exactly using a generalized Lambert function. The result enables an accurate asymptotic expression for the value of the infinite sum.</description><identifier>ISSN: 1932-2240</identifier><identifier>EISSN: 1932-2240</identifier><identifier>DOI: 10.1145/3637529.3637530</identifier><language>eng</language><publisher>New York, NY, USA: ACM</publisher><subject>Mathematics of computing ; Mathematics of computing / Discrete mathematics ; Mathematics of computing / Discrete mathematics / Combinatorics ; Mathematics of computing / Discrete mathematics / Combinatorics / Generating functions ; Mathematics of computing / Mathematical analysis ; Mathematics of computing / Mathematical analysis / Numerical analysis ; Theory of computation ; Theory of computation / Design and analysis of algorithms ; Theory of computation / Design and analysis of algorithms / Approximation algorithms analysis</subject><ispartof>ACM communications in computer algebra, 2023-12, Vol.57 (3), p.85-110</ispartof><rights>Copyright is held by the owner/author(s)</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-a214t-196aa0373b81537649d7c7f12974e566a9c2823e16b2f0b74067df2093683a43</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://dl.acm.org/doi/pdf/10.1145/3637529.3637530$$EPDF$$P50$$Gacm$$H</linktopdf><link.rule.ids>314,780,784,2282,27924,27925,40196,76228</link.rule.ids></links><search><creatorcontrib>McPhedran, Ross</creatorcontrib><creatorcontrib>Scott, Tony C.</creatorcontrib><creatorcontrib>Maignan, Aude</creatorcontrib><title>The Keiper-Li Criterion for the Riemann Hypothesis and Generalized Lambert Functions</title><title>ACM communications in computer algebra</title><addtitle>ACM SIGSAM-CCA</addtitle><description>Keiper [1] and Li [2] published independent investigations of the connection between the Riemann hypothesis and the properties of sums over powers of zeros of the Riemann zeta function. Here we consider a reframing of the criterion, to work with higher-order derivatives ξr of the symmetrized function ξ(s) at s = 1/2, with all ξr known to be positive. The reframed criterion requires knowledge of the asymptotic properties of two terms, one being an infinite sum over the ξr. This is studied using known asymptotic expansions for the ξr, which give the location of the summand as a relationship between two parameters. This relationship needs to be inverted, which we show can be done exactly using a generalized Lambert function. The result enables an accurate asymptotic expression for the value of the infinite sum.</description><subject>Mathematics of computing</subject><subject>Mathematics of computing / Discrete mathematics</subject><subject>Mathematics of computing / Discrete mathematics / Combinatorics</subject><subject>Mathematics of computing / Discrete mathematics / Combinatorics / Generating functions</subject><subject>Mathematics of computing / Mathematical analysis</subject><subject>Mathematics of computing / Mathematical analysis / Numerical analysis</subject><subject>Theory of computation</subject><subject>Theory of computation / Design and analysis of algorithms</subject><subject>Theory of computation / Design and analysis of algorithms / Approximation algorithms analysis</subject><issn>1932-2240</issn><issn>1932-2240</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNpNkE1Lw0AQhhdRsFbPgqf9A2n3K7vZowTbigFBcg-TZBZXmqTsxkP99UYbi6d3hneeOTyE3HO24lyla6mlSYVd_aZkF2TBrRSJEIpd_puvyU2MH4ypjNtsQcryHekL-gOGpPA0D37E4IeeuiHQcerePHbQ93R3PAzTHn2k0Ld0iz0G2PsvbGkBXY1hpJvPvhknNt6SKwf7iHdzLkm5eSrzXVK8bp_zxyIBwdWYcKsBmDSyzngqjVa2NY1xXFijMNUabCMyIZHrWjhWG8W0aZ1gVupMgpJLsj69bcIQY0BXHYLvIBwrzqofJ9XspJqdTMTDiYCmOx__ld9Oo1sN</recordid><startdate>20231213</startdate><enddate>20231213</enddate><creator>McPhedran, Ross</creator><creator>Scott, Tony C.</creator><creator>Maignan, Aude</creator><general>ACM</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20231213</creationdate><title>The Keiper-Li Criterion for the Riemann Hypothesis and Generalized Lambert Functions</title><author>McPhedran, Ross ; Scott, Tony C. ; Maignan, Aude</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a214t-196aa0373b81537649d7c7f12974e566a9c2823e16b2f0b74067df2093683a43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Mathematics of computing</topic><topic>Mathematics of computing / Discrete mathematics</topic><topic>Mathematics of computing / Discrete mathematics / Combinatorics</topic><topic>Mathematics of computing / Discrete mathematics / Combinatorics / Generating functions</topic><topic>Mathematics of computing / Mathematical analysis</topic><topic>Mathematics of computing / Mathematical analysis / Numerical analysis</topic><topic>Theory of computation</topic><topic>Theory of computation / Design and analysis of algorithms</topic><topic>Theory of computation / Design and analysis of algorithms / Approximation algorithms analysis</topic><toplevel>online_resources</toplevel><creatorcontrib>McPhedran, Ross</creatorcontrib><creatorcontrib>Scott, Tony C.</creatorcontrib><creatorcontrib>Maignan, Aude</creatorcontrib><collection>CrossRef</collection><jtitle>ACM communications in computer algebra</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>McPhedran, Ross</au><au>Scott, Tony C.</au><au>Maignan, Aude</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The Keiper-Li Criterion for the Riemann Hypothesis and Generalized Lambert Functions</atitle><jtitle>ACM communications in computer algebra</jtitle><stitle>ACM SIGSAM-CCA</stitle><date>2023-12-13</date><risdate>2023</risdate><volume>57</volume><issue>3</issue><spage>85</spage><epage>110</epage><pages>85-110</pages><issn>1932-2240</issn><eissn>1932-2240</eissn><abstract>Keiper [1] and Li [2] published independent investigations of the connection between the Riemann hypothesis and the properties of sums over powers of zeros of the Riemann zeta function. Here we consider a reframing of the criterion, to work with higher-order derivatives ξr of the symmetrized function ξ(s) at s = 1/2, with all ξr known to be positive. The reframed criterion requires knowledge of the asymptotic properties of two terms, one being an infinite sum over the ξr. This is studied using known asymptotic expansions for the ξr, which give the location of the summand as a relationship between two parameters. This relationship needs to be inverted, which we show can be done exactly using a generalized Lambert function. The result enables an accurate asymptotic expression for the value of the infinite sum.</abstract><cop>New York, NY, USA</cop><pub>ACM</pub><doi>10.1145/3637529.3637530</doi><tpages>26</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1932-2240
ispartof ACM communications in computer algebra, 2023-12, Vol.57 (3), p.85-110
issn 1932-2240
1932-2240
language eng
recordid cdi_crossref_primary_10_1145_3637529_3637530
source Access via ACM Digital Library
subjects Mathematics of computing
Mathematics of computing / Discrete mathematics
Mathematics of computing / Discrete mathematics / Combinatorics
Mathematics of computing / Discrete mathematics / Combinatorics / Generating functions
Mathematics of computing / Mathematical analysis
Mathematics of computing / Mathematical analysis / Numerical analysis
Theory of computation
Theory of computation / Design and analysis of algorithms
Theory of computation / Design and analysis of algorithms / Approximation algorithms analysis
title The Keiper-Li Criterion for the Riemann Hypothesis and Generalized Lambert Functions
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T06%3A20%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-acm_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20Keiper-Li%20Criterion%20for%20the%20Riemann%20Hypothesis%20and%20Generalized%20Lambert%20Functions&rft.jtitle=ACM%20communications%20in%20computer%20algebra&rft.au=McPhedran,%20Ross&rft.date=2023-12-13&rft.volume=57&rft.issue=3&rft.spage=85&rft.epage=110&rft.pages=85-110&rft.issn=1932-2240&rft.eissn=1932-2240&rft_id=info:doi/10.1145/3637529.3637530&rft_dat=%3Cacm_cross%3E3637530%3C/acm_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true