The Keiper-Li Criterion for the Riemann Hypothesis and Generalized Lambert Functions
Keiper [1] and Li [2] published independent investigations of the connection between the Riemann hypothesis and the properties of sums over powers of zeros of the Riemann zeta function. Here we consider a reframing of the criterion, to work with higher-order derivatives ξr of the symmetrized functio...
Gespeichert in:
Veröffentlicht in: | ACM communications in computer algebra 2023-12, Vol.57 (3), p.85-110 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 110 |
---|---|
container_issue | 3 |
container_start_page | 85 |
container_title | ACM communications in computer algebra |
container_volume | 57 |
creator | McPhedran, Ross Scott, Tony C. Maignan, Aude |
description | Keiper [1] and Li [2] published independent investigations of the connection between the Riemann hypothesis and the properties of sums over powers of zeros of the Riemann zeta function. Here we consider a reframing of the criterion, to work with higher-order derivatives ξr of the symmetrized function ξ(s) at s = 1/2, with all ξr known to be positive. The reframed criterion requires knowledge of the asymptotic properties of two terms, one being an infinite sum over the ξr. This is studied using known asymptotic expansions for the ξr, which give the location of the summand as a relationship between two parameters. This relationship needs to be inverted, which we show can be done exactly using a generalized Lambert function. The result enables an accurate asymptotic expression for the value of the infinite sum. |
doi_str_mv | 10.1145/3637529.3637530 |
format | Article |
fullrecord | <record><control><sourceid>acm_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1145_3637529_3637530</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3637530</sourcerecordid><originalsourceid>FETCH-LOGICAL-a214t-196aa0373b81537649d7c7f12974e566a9c2823e16b2f0b74067df2093683a43</originalsourceid><addsrcrecordid>eNpNkE1Lw0AQhhdRsFbPgqf9A2n3K7vZowTbigFBcg-TZBZXmqTsxkP99UYbi6d3hneeOTyE3HO24lyla6mlSYVd_aZkF2TBrRSJEIpd_puvyU2MH4ypjNtsQcryHekL-gOGpPA0D37E4IeeuiHQcerePHbQ93R3PAzTHn2k0Ld0iz0G2PsvbGkBXY1hpJvPvhknNt6SKwf7iHdzLkm5eSrzXVK8bp_zxyIBwdWYcKsBmDSyzngqjVa2NY1xXFijMNUabCMyIZHrWjhWG8W0aZ1gVupMgpJLsj69bcIQY0BXHYLvIBwrzqofJ9XspJqdTMTDiYCmOx__ld9Oo1sN</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>The Keiper-Li Criterion for the Riemann Hypothesis and Generalized Lambert Functions</title><source>Access via ACM Digital Library</source><creator>McPhedran, Ross ; Scott, Tony C. ; Maignan, Aude</creator><creatorcontrib>McPhedran, Ross ; Scott, Tony C. ; Maignan, Aude</creatorcontrib><description>Keiper [1] and Li [2] published independent investigations of the connection between the Riemann hypothesis and the properties of sums over powers of zeros of the Riemann zeta function. Here we consider a reframing of the criterion, to work with higher-order derivatives ξr of the symmetrized function ξ(s) at s = 1/2, with all ξr known to be positive. The reframed criterion requires knowledge of the asymptotic properties of two terms, one being an infinite sum over the ξr. This is studied using known asymptotic expansions for the ξr, which give the location of the summand as a relationship between two parameters. This relationship needs to be inverted, which we show can be done exactly using a generalized Lambert function. The result enables an accurate asymptotic expression for the value of the infinite sum.</description><identifier>ISSN: 1932-2240</identifier><identifier>EISSN: 1932-2240</identifier><identifier>DOI: 10.1145/3637529.3637530</identifier><language>eng</language><publisher>New York, NY, USA: ACM</publisher><subject>Mathematics of computing ; Mathematics of computing / Discrete mathematics ; Mathematics of computing / Discrete mathematics / Combinatorics ; Mathematics of computing / Discrete mathematics / Combinatorics / Generating functions ; Mathematics of computing / Mathematical analysis ; Mathematics of computing / Mathematical analysis / Numerical analysis ; Theory of computation ; Theory of computation / Design and analysis of algorithms ; Theory of computation / Design and analysis of algorithms / Approximation algorithms analysis</subject><ispartof>ACM communications in computer algebra, 2023-12, Vol.57 (3), p.85-110</ispartof><rights>Copyright is held by the owner/author(s)</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-a214t-196aa0373b81537649d7c7f12974e566a9c2823e16b2f0b74067df2093683a43</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://dl.acm.org/doi/pdf/10.1145/3637529.3637530$$EPDF$$P50$$Gacm$$H</linktopdf><link.rule.ids>314,780,784,2282,27924,27925,40196,76228</link.rule.ids></links><search><creatorcontrib>McPhedran, Ross</creatorcontrib><creatorcontrib>Scott, Tony C.</creatorcontrib><creatorcontrib>Maignan, Aude</creatorcontrib><title>The Keiper-Li Criterion for the Riemann Hypothesis and Generalized Lambert Functions</title><title>ACM communications in computer algebra</title><addtitle>ACM SIGSAM-CCA</addtitle><description>Keiper [1] and Li [2] published independent investigations of the connection between the Riemann hypothesis and the properties of sums over powers of zeros of the Riemann zeta function. Here we consider a reframing of the criterion, to work with higher-order derivatives ξr of the symmetrized function ξ(s) at s = 1/2, with all ξr known to be positive. The reframed criterion requires knowledge of the asymptotic properties of two terms, one being an infinite sum over the ξr. This is studied using known asymptotic expansions for the ξr, which give the location of the summand as a relationship between two parameters. This relationship needs to be inverted, which we show can be done exactly using a generalized Lambert function. The result enables an accurate asymptotic expression for the value of the infinite sum.</description><subject>Mathematics of computing</subject><subject>Mathematics of computing / Discrete mathematics</subject><subject>Mathematics of computing / Discrete mathematics / Combinatorics</subject><subject>Mathematics of computing / Discrete mathematics / Combinatorics / Generating functions</subject><subject>Mathematics of computing / Mathematical analysis</subject><subject>Mathematics of computing / Mathematical analysis / Numerical analysis</subject><subject>Theory of computation</subject><subject>Theory of computation / Design and analysis of algorithms</subject><subject>Theory of computation / Design and analysis of algorithms / Approximation algorithms analysis</subject><issn>1932-2240</issn><issn>1932-2240</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNpNkE1Lw0AQhhdRsFbPgqf9A2n3K7vZowTbigFBcg-TZBZXmqTsxkP99UYbi6d3hneeOTyE3HO24lyla6mlSYVd_aZkF2TBrRSJEIpd_puvyU2MH4ypjNtsQcryHekL-gOGpPA0D37E4IeeuiHQcerePHbQ93R3PAzTHn2k0Ld0iz0G2PsvbGkBXY1hpJvPvhknNt6SKwf7iHdzLkm5eSrzXVK8bp_zxyIBwdWYcKsBmDSyzngqjVa2NY1xXFijMNUabCMyIZHrWjhWG8W0aZ1gVupMgpJLsj69bcIQY0BXHYLvIBwrzqofJ9XspJqdTMTDiYCmOx__ld9Oo1sN</recordid><startdate>20231213</startdate><enddate>20231213</enddate><creator>McPhedran, Ross</creator><creator>Scott, Tony C.</creator><creator>Maignan, Aude</creator><general>ACM</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20231213</creationdate><title>The Keiper-Li Criterion for the Riemann Hypothesis and Generalized Lambert Functions</title><author>McPhedran, Ross ; Scott, Tony C. ; Maignan, Aude</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a214t-196aa0373b81537649d7c7f12974e566a9c2823e16b2f0b74067df2093683a43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Mathematics of computing</topic><topic>Mathematics of computing / Discrete mathematics</topic><topic>Mathematics of computing / Discrete mathematics / Combinatorics</topic><topic>Mathematics of computing / Discrete mathematics / Combinatorics / Generating functions</topic><topic>Mathematics of computing / Mathematical analysis</topic><topic>Mathematics of computing / Mathematical analysis / Numerical analysis</topic><topic>Theory of computation</topic><topic>Theory of computation / Design and analysis of algorithms</topic><topic>Theory of computation / Design and analysis of algorithms / Approximation algorithms analysis</topic><toplevel>online_resources</toplevel><creatorcontrib>McPhedran, Ross</creatorcontrib><creatorcontrib>Scott, Tony C.</creatorcontrib><creatorcontrib>Maignan, Aude</creatorcontrib><collection>CrossRef</collection><jtitle>ACM communications in computer algebra</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>McPhedran, Ross</au><au>Scott, Tony C.</au><au>Maignan, Aude</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The Keiper-Li Criterion for the Riemann Hypothesis and Generalized Lambert Functions</atitle><jtitle>ACM communications in computer algebra</jtitle><stitle>ACM SIGSAM-CCA</stitle><date>2023-12-13</date><risdate>2023</risdate><volume>57</volume><issue>3</issue><spage>85</spage><epage>110</epage><pages>85-110</pages><issn>1932-2240</issn><eissn>1932-2240</eissn><abstract>Keiper [1] and Li [2] published independent investigations of the connection between the Riemann hypothesis and the properties of sums over powers of zeros of the Riemann zeta function. Here we consider a reframing of the criterion, to work with higher-order derivatives ξr of the symmetrized function ξ(s) at s = 1/2, with all ξr known to be positive. The reframed criterion requires knowledge of the asymptotic properties of two terms, one being an infinite sum over the ξr. This is studied using known asymptotic expansions for the ξr, which give the location of the summand as a relationship between two parameters. This relationship needs to be inverted, which we show can be done exactly using a generalized Lambert function. The result enables an accurate asymptotic expression for the value of the infinite sum.</abstract><cop>New York, NY, USA</cop><pub>ACM</pub><doi>10.1145/3637529.3637530</doi><tpages>26</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1932-2240 |
ispartof | ACM communications in computer algebra, 2023-12, Vol.57 (3), p.85-110 |
issn | 1932-2240 1932-2240 |
language | eng |
recordid | cdi_crossref_primary_10_1145_3637529_3637530 |
source | Access via ACM Digital Library |
subjects | Mathematics of computing Mathematics of computing / Discrete mathematics Mathematics of computing / Discrete mathematics / Combinatorics Mathematics of computing / Discrete mathematics / Combinatorics / Generating functions Mathematics of computing / Mathematical analysis Mathematics of computing / Mathematical analysis / Numerical analysis Theory of computation Theory of computation / Design and analysis of algorithms Theory of computation / Design and analysis of algorithms / Approximation algorithms analysis |
title | The Keiper-Li Criterion for the Riemann Hypothesis and Generalized Lambert Functions |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T06%3A20%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-acm_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20Keiper-Li%20Criterion%20for%20the%20Riemann%20Hypothesis%20and%20Generalized%20Lambert%20Functions&rft.jtitle=ACM%20communications%20in%20computer%20algebra&rft.au=McPhedran,%20Ross&rft.date=2023-12-13&rft.volume=57&rft.issue=3&rft.spage=85&rft.epage=110&rft.pages=85-110&rft.issn=1932-2240&rft.eissn=1932-2240&rft_id=info:doi/10.1145/3637529.3637530&rft_dat=%3Cacm_cross%3E3637530%3C/acm_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |