Inference of Probabilistic Programs with Moment-Matching Gaussian Mixtures

Computing the posterior distribution of a probabilistic program is a hard task for which no one-fit-for-all solution exists. We propose Gaussian Semantics, which approximates the exact probabilistic semantics of a bounded program by means of Gaussian mixtures. It is parametrized by a map that associ...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of ACM on programming languages 2024-01, Vol.8 (POPL), p.1882-1912, Article 63
Hauptverfasser: Randone, Francesca, Bortolussi, Luca, Incerto, Emilio, Tribastone, Mirco
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Computing the posterior distribution of a probabilistic program is a hard task for which no one-fit-for-all solution exists. We propose Gaussian Semantics, which approximates the exact probabilistic semantics of a bounded program by means of Gaussian mixtures. It is parametrized by a map that associates each program location with the moment order to be matched in the approximation. We provide two main contributions. The first is a universal approximation theorem stating that, under mild conditions, Gaussian Semantics can approximate the exact semantics arbitrarily closely. The second is an approximation that matches up to second-order moments analytically in face of the generally difficult problem of matching moments of Gaussian mixtures with arbitrary moment order. We test our second-order Gaussian approximation (SOGA) on a number of case studies from the literature. We show that it can provide accurate estimates in models not supported by other approximation methods or when exact symbolic techniques fail because of complex expressions or non-simplified integrals. On two notable classes of problems, namely collaborative filtering and programs involving mixtures of continuous and discrete distributions, we show that SOGA significantly outperforms alternative techniques in terms of accuracy and computational time.
ISSN:2475-1421
2475-1421
DOI:10.1145/3632905