GAGPT-2: A Geometric Attention-based GPT-2 Framework for Image Captioning in Hindi
Image captioning frameworks usually employ an encoder-decoder paradigm, with the encoder receiving abstract image feature vectors as input and the decoder for language modeling. Nowadays, most prominent architectures employ features from region proposals derived from object detection modules. In thi...
Gespeichert in:
Veröffentlicht in: | ACM transactions on Asian and low-resource language information processing 2023-10, Vol.22 (10), p.1-16, Article 241 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 16 |
---|---|
container_issue | 10 |
container_start_page | 1 |
container_title | ACM transactions on Asian and low-resource language information processing |
container_volume | 22 |
creator | Mishra, Santosh Kumar Chakraborty, Soham Saha, Sriparna Bhattacharyya, Pushpak |
description | Image captioning frameworks usually employ an encoder-decoder paradigm, with the encoder receiving abstract image feature vectors as input and the decoder for language modeling. Nowadays, most prominent architectures employ features from region proposals derived from object detection modules. In this work, we propose a novel architecture for image captioning. We employ the object detection module integrated with transformer architecture as an encoder and GPT-2 (Generative Pre-trained Transformer) as a decoder. The encoder utilizes the information of the spatial relationships among detected objects. We introduce a unique methodology for image caption generation in Hindi, which is widely spoken in South Asia and India and is the world’s third most spoken language as well as India’s official language. In terms of BLEU scores, the proposed approach’s performance is comparable to those of other baselines, and the results illustrate that the proposed approach outperforms the other baselines. The efficacy of the proposed approach in generating correct captions is further determined by human assessment in terms of adequacy and fluency. |
doi_str_mv | 10.1145/3622936 |
format | Article |
fullrecord | <record><control><sourceid>acm_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1145_3622936</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3622936</sourcerecordid><originalsourceid>FETCH-LOGICAL-a202t-85a8a6669408ebcc3ca28d5bc66cb71ac560046cdd7cf979cf9e3718cd5713c13</originalsourceid><addsrcrecordid>eNo90M9LwzAUB_AgCo45vHvKzVM1P5qXxlsZrhsMFJnnkr6kI2rbkRTE_97NbV7ee_D98A5fQm45e-A8V48ShDASLshESK2yXDNxeb7BmGsyS-mDMcZzDcD4hLxVZfW6ycQTLWnlh86PMSAtx9H3Yxj6rLHJO_pH6CLazn8P8ZO2Q6Srzm49ndvdwYV-S0NPl6F34YZctfYr-dlpT8n74nkzX2brl2o1L9eZFUyMWaFsYQHA5KzwDaJEKwqnGgTARnOLChjLAZ3T2Bpt9sNLzQt0SnOJXE7J_fEvxiGl6Nt6F0Nn40_NWX1ooz61sZd3R2mx-0fn8BehuFdi</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>GAGPT-2: A Geometric Attention-based GPT-2 Framework for Image Captioning in Hindi</title><source>Access via ACM Digital Library</source><creator>Mishra, Santosh Kumar ; Chakraborty, Soham ; Saha, Sriparna ; Bhattacharyya, Pushpak</creator><creatorcontrib>Mishra, Santosh Kumar ; Chakraborty, Soham ; Saha, Sriparna ; Bhattacharyya, Pushpak</creatorcontrib><description>Image captioning frameworks usually employ an encoder-decoder paradigm, with the encoder receiving abstract image feature vectors as input and the decoder for language modeling. Nowadays, most prominent architectures employ features from region proposals derived from object detection modules. In this work, we propose a novel architecture for image captioning. We employ the object detection module integrated with transformer architecture as an encoder and GPT-2 (Generative Pre-trained Transformer) as a decoder. The encoder utilizes the information of the spatial relationships among detected objects. We introduce a unique methodology for image caption generation in Hindi, which is widely spoken in South Asia and India and is the world’s third most spoken language as well as India’s official language. In terms of BLEU scores, the proposed approach’s performance is comparable to those of other baselines, and the results illustrate that the proposed approach outperforms the other baselines. The efficacy of the proposed approach in generating correct captions is further determined by human assessment in terms of adequacy and fluency.</description><identifier>ISSN: 2375-4699</identifier><identifier>EISSN: 2375-4702</identifier><identifier>DOI: 10.1145/3622936</identifier><language>eng</language><publisher>New York, NY: ACM</publisher><subject>Computing methodologies ; Natural language generation</subject><ispartof>ACM transactions on Asian and low-resource language information processing, 2023-10, Vol.22 (10), p.1-16, Article 241</ispartof><rights>Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-a202t-85a8a6669408ebcc3ca28d5bc66cb71ac560046cdd7cf979cf9e3718cd5713c13</cites><orcidid>0000-0001-5458-9381 ; 0000-0003-4639-5506 ; 0000-0001-5319-5508 ; 0009-0004-2675-9418</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://dl.acm.org/doi/pdf/10.1145/3622936$$EPDF$$P50$$Gacm$$H</linktopdf><link.rule.ids>315,781,785,2283,27926,27927,40198,76230</link.rule.ids></links><search><creatorcontrib>Mishra, Santosh Kumar</creatorcontrib><creatorcontrib>Chakraborty, Soham</creatorcontrib><creatorcontrib>Saha, Sriparna</creatorcontrib><creatorcontrib>Bhattacharyya, Pushpak</creatorcontrib><title>GAGPT-2: A Geometric Attention-based GPT-2 Framework for Image Captioning in Hindi</title><title>ACM transactions on Asian and low-resource language information processing</title><addtitle>ACM TALLIP</addtitle><description>Image captioning frameworks usually employ an encoder-decoder paradigm, with the encoder receiving abstract image feature vectors as input and the decoder for language modeling. Nowadays, most prominent architectures employ features from region proposals derived from object detection modules. In this work, we propose a novel architecture for image captioning. We employ the object detection module integrated with transformer architecture as an encoder and GPT-2 (Generative Pre-trained Transformer) as a decoder. The encoder utilizes the information of the spatial relationships among detected objects. We introduce a unique methodology for image caption generation in Hindi, which is widely spoken in South Asia and India and is the world’s third most spoken language as well as India’s official language. In terms of BLEU scores, the proposed approach’s performance is comparable to those of other baselines, and the results illustrate that the proposed approach outperforms the other baselines. The efficacy of the proposed approach in generating correct captions is further determined by human assessment in terms of adequacy and fluency.</description><subject>Computing methodologies</subject><subject>Natural language generation</subject><issn>2375-4699</issn><issn>2375-4702</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNo90M9LwzAUB_AgCo45vHvKzVM1P5qXxlsZrhsMFJnnkr6kI2rbkRTE_97NbV7ee_D98A5fQm45e-A8V48ShDASLshESK2yXDNxeb7BmGsyS-mDMcZzDcD4hLxVZfW6ycQTLWnlh86PMSAtx9H3Yxj6rLHJO_pH6CLazn8P8ZO2Q6Srzm49ndvdwYV-S0NPl6F34YZctfYr-dlpT8n74nkzX2brl2o1L9eZFUyMWaFsYQHA5KzwDaJEKwqnGgTARnOLChjLAZ3T2Bpt9sNLzQt0SnOJXE7J_fEvxiGl6Nt6F0Nn40_NWX1ooz61sZd3R2mx-0fn8BehuFdi</recordid><startdate>20231014</startdate><enddate>20231014</enddate><creator>Mishra, Santosh Kumar</creator><creator>Chakraborty, Soham</creator><creator>Saha, Sriparna</creator><creator>Bhattacharyya, Pushpak</creator><general>ACM</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0001-5458-9381</orcidid><orcidid>https://orcid.org/0000-0003-4639-5506</orcidid><orcidid>https://orcid.org/0000-0001-5319-5508</orcidid><orcidid>https://orcid.org/0009-0004-2675-9418</orcidid></search><sort><creationdate>20231014</creationdate><title>GAGPT-2: A Geometric Attention-based GPT-2 Framework for Image Captioning in Hindi</title><author>Mishra, Santosh Kumar ; Chakraborty, Soham ; Saha, Sriparna ; Bhattacharyya, Pushpak</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a202t-85a8a6669408ebcc3ca28d5bc66cb71ac560046cdd7cf979cf9e3718cd5713c13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Computing methodologies</topic><topic>Natural language generation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mishra, Santosh Kumar</creatorcontrib><creatorcontrib>Chakraborty, Soham</creatorcontrib><creatorcontrib>Saha, Sriparna</creatorcontrib><creatorcontrib>Bhattacharyya, Pushpak</creatorcontrib><collection>CrossRef</collection><jtitle>ACM transactions on Asian and low-resource language information processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mishra, Santosh Kumar</au><au>Chakraborty, Soham</au><au>Saha, Sriparna</au><au>Bhattacharyya, Pushpak</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>GAGPT-2: A Geometric Attention-based GPT-2 Framework for Image Captioning in Hindi</atitle><jtitle>ACM transactions on Asian and low-resource language information processing</jtitle><stitle>ACM TALLIP</stitle><date>2023-10-14</date><risdate>2023</risdate><volume>22</volume><issue>10</issue><spage>1</spage><epage>16</epage><pages>1-16</pages><artnum>241</artnum><issn>2375-4699</issn><eissn>2375-4702</eissn><abstract>Image captioning frameworks usually employ an encoder-decoder paradigm, with the encoder receiving abstract image feature vectors as input and the decoder for language modeling. Nowadays, most prominent architectures employ features from region proposals derived from object detection modules. In this work, we propose a novel architecture for image captioning. We employ the object detection module integrated with transformer architecture as an encoder and GPT-2 (Generative Pre-trained Transformer) as a decoder. The encoder utilizes the information of the spatial relationships among detected objects. We introduce a unique methodology for image caption generation in Hindi, which is widely spoken in South Asia and India and is the world’s third most spoken language as well as India’s official language. In terms of BLEU scores, the proposed approach’s performance is comparable to those of other baselines, and the results illustrate that the proposed approach outperforms the other baselines. The efficacy of the proposed approach in generating correct captions is further determined by human assessment in terms of adequacy and fluency.</abstract><cop>New York, NY</cop><pub>ACM</pub><doi>10.1145/3622936</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0001-5458-9381</orcidid><orcidid>https://orcid.org/0000-0003-4639-5506</orcidid><orcidid>https://orcid.org/0000-0001-5319-5508</orcidid><orcidid>https://orcid.org/0009-0004-2675-9418</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2375-4699 |
ispartof | ACM transactions on Asian and low-resource language information processing, 2023-10, Vol.22 (10), p.1-16, Article 241 |
issn | 2375-4699 2375-4702 |
language | eng |
recordid | cdi_crossref_primary_10_1145_3622936 |
source | Access via ACM Digital Library |
subjects | Computing methodologies Natural language generation |
title | GAGPT-2: A Geometric Attention-based GPT-2 Framework for Image Captioning in Hindi |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-18T00%3A26%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-acm_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=GAGPT-2:%20A%20Geometric%20Attention-based%20GPT-2%20Framework%20for%20Image%20Captioning%20in%20Hindi&rft.jtitle=ACM%20transactions%20on%20Asian%20and%20low-resource%20language%20information%20processing&rft.au=Mishra,%20Santosh%20Kumar&rft.date=2023-10-14&rft.volume=22&rft.issue=10&rft.spage=1&rft.epage=16&rft.pages=1-16&rft.artnum=241&rft.issn=2375-4699&rft.eissn=2375-4702&rft_id=info:doi/10.1145/3622936&rft_dat=%3Cacm_cross%3E3622936%3C/acm_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |