Towards Better Semantics Exploration for Browser Fuzzing
Web browsers exhibit rich semantics that enable a plethora of web-based functionalities. However, these intricate semantics present significant challenges for the implementation and testing of browsers. For example, fuzzing, a widely adopted testing technique, typically relies on handwritten context...
Gespeichert in:
Veröffentlicht in: | Proceedings of ACM on programming languages 2023-10, Vol.7 (OOPSLA2), p.604-631, Article 243 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Web browsers exhibit rich semantics that enable a plethora of web-based functionalities. However, these intricate semantics present significant challenges for the implementation and testing of browsers. For example, fuzzing, a widely adopted testing technique, typically relies on handwritten context-free grammars (CFGs) for automatically generating inputs. However, these CFGs fall short in adequately modeling the complex semantics of browsers, resulting in generated inputs that cover only a portion of the semantics and are prone to semantic errors. In this paper, we present SaGe, an automated method that enhances browser fuzzing through the use of production-context sensitive grammars (PCSGs) incorporating semantic information. Our approach begins by extracting a rudimentary CFG from W3C standards and iteratively enhancing it to create a PCSG. The resulting PCSG enables our fuzzer to generate inputs that explore a broader range of browser semantics with a higher proportion of semantically-correct inputs. To evaluate the efficacy of SaGe, we conducted 24-hour fuzzing campaigns on mainstream browsers, including Chrome, Safari, and Firefox. Our approach demonstrated better performance compared to existing browser fuzzers, with a 6.03%-277.80% improvement in edge coverage, a 3.56%-161.71% boost in semantic correctness rate, twice the number of bugs discovered. Moreover, we identified 62 bugs across the three browsers, with 40 confirmed and 10 assigned CVEs. |
---|---|
ISSN: | 2475-1421 2475-1421 |
DOI: | 10.1145/3622819 |