airBP: Monitor Your Blood Pressure with Millimeter-Wave in the Air
Blood pressure (BP), an important vital sign to assess human health, is expected to be monitored conveniently. The existing BP monitoring methods, either traditional cuff based or newly emerging wearable based, all require skin contact, which may cause unpleasant user experience and is even injuriou...
Gespeichert in:
Veröffentlicht in: | ACM transactions on the internet of things 2023-11, Vol.4 (4), p.1-32, Article 28 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 32 |
---|---|
container_issue | 4 |
container_start_page | 1 |
container_title | ACM transactions on the internet of things |
container_volume | 4 |
creator | Liang, Yumeng Zhou, Anfu Wen, Xinzhe Huang, Wei Shi, Pu Pu, Lingyu Zhang, Huanhuan Ma, Huadong |
description | Blood pressure (BP), an important vital sign to assess human health, is expected to be monitored conveniently. The existing BP monitoring methods, either traditional cuff based or newly emerging wearable based, all require skin contact, which may cause unpleasant user experience and is even injurious to certain users. In this article, we explore contactless BP monitoring and propose airBP, which emits millimeter-wave signals toward a user’s wrist, and captures the reflected signal bounded off from the pulsating artery underlying the wrist. By analyzing the reflected signal strength of the signal, airBP generates the arterial pulse and further estimates BP by exploiting the relationship between the arterial pulse and BP. To realize airBP, we design a new beam-forming method to keep focusing on the tiny and hidden wrist artery, by leveraging the inherent periodicity of the arterial pulse. Moreover, we custom design a pre-training and neural network architecture, to combat the challenges from the arterial pulse sparsity and ambiguity, so as to estimate BP accurately. We prototype airBP using a coin-size commercial off-the-shelf millimeter-wave radar and perform extensive experiments on 41 subjects. The results demonstrate that airBP accurately estimates systolic and diastolic BP, with a mean error of –0.30 mmHg and –0.23 mmHg, as well as a standard deviation error of 4.80 mmHg and 3.79 mmHg (within the acceptable range regulated by the FDA’s AAMI protocol), respectively, at a distance up to 26 cm. |
doi_str_mv | 10.1145/3614439 |
format | Article |
fullrecord | <record><control><sourceid>acm_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1145_3614439</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3614439</sourcerecordid><originalsourceid>FETCH-LOGICAL-a239t-70711cfe758fb76de9ec46db9f00549a2adf092c969f9cfbbb284a12057654953</originalsourceid><addsrcrecordid>eNo9j0tLAzEYRYMoWGpx7yo7V9F8eTbu2uILWuxCEVdDJpPQyEwjyVTx3zvS6upeuIcLB6FzoFcAQl5zBUJwc4RGTGpNFKP6eOjKAAED4hRNSnmnlDIOXEg9QnMb83x9g1dpG_uU8VvaZTxvU2rwOvtSdtnjr9hv8Cq2bex87zN5tZ8exy3uNx7PYj5DJ8G2xU8OOUYvd7fPiweyfLp_XMyWxDJueqKpBnDBazkNtVaNN94J1dQmUCqFscw2gRrmjDLBuFDXNZsKC4xKrYZd8jG63P-6nErJPlQfOXY2f1dAq1_76mA_kBd70rruH_obfwCwElLK</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>airBP: Monitor Your Blood Pressure with Millimeter-Wave in the Air</title><source>ACM Digital Library Complete</source><creator>Liang, Yumeng ; Zhou, Anfu ; Wen, Xinzhe ; Huang, Wei ; Shi, Pu ; Pu, Lingyu ; Zhang, Huanhuan ; Ma, Huadong</creator><creatorcontrib>Liang, Yumeng ; Zhou, Anfu ; Wen, Xinzhe ; Huang, Wei ; Shi, Pu ; Pu, Lingyu ; Zhang, Huanhuan ; Ma, Huadong</creatorcontrib><description>Blood pressure (BP), an important vital sign to assess human health, is expected to be monitored conveniently. The existing BP monitoring methods, either traditional cuff based or newly emerging wearable based, all require skin contact, which may cause unpleasant user experience and is even injurious to certain users. In this article, we explore contactless BP monitoring and propose airBP, which emits millimeter-wave signals toward a user’s wrist, and captures the reflected signal bounded off from the pulsating artery underlying the wrist. By analyzing the reflected signal strength of the signal, airBP generates the arterial pulse and further estimates BP by exploiting the relationship between the arterial pulse and BP. To realize airBP, we design a new beam-forming method to keep focusing on the tiny and hidden wrist artery, by leveraging the inherent periodicity of the arterial pulse. Moreover, we custom design a pre-training and neural network architecture, to combat the challenges from the arterial pulse sparsity and ambiguity, so as to estimate BP accurately. We prototype airBP using a coin-size commercial off-the-shelf millimeter-wave radar and perform extensive experiments on 41 subjects. The results demonstrate that airBP accurately estimates systolic and diastolic BP, with a mean error of –0.30 mmHg and –0.23 mmHg, as well as a standard deviation error of 4.80 mmHg and 3.79 mmHg (within the acceptable range regulated by the FDA’s AAMI protocol), respectively, at a distance up to 26 cm.</description><identifier>ISSN: 2691-1914</identifier><identifier>EISSN: 2577-6207</identifier><identifier>DOI: 10.1145/3614439</identifier><language>eng</language><publisher>New York, NY: ACM</publisher><subject>Human-centered computing ; Ubiquitous and mobile computing design and evaluation methods</subject><ispartof>ACM transactions on the internet of things, 2023-11, Vol.4 (4), p.1-32, Article 28</ispartof><rights>Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-a239t-70711cfe758fb76de9ec46db9f00549a2adf092c969f9cfbbb284a12057654953</cites><orcidid>0000-0002-8785-3350 ; 0009-0003-7908-1850 ; 0000-0002-7199-5047 ; 0009-0004-1930-8184 ; 0000-0002-8330-0580 ; 0000-0002-9254-8801 ; 0000-0003-3956-093X ; 0009-0005-0909-6541</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://dl.acm.org/doi/pdf/10.1145/3614439$$EPDF$$P50$$Gacm$$H</linktopdf><link.rule.ids>314,780,784,2282,27924,27925,40196,76228</link.rule.ids></links><search><creatorcontrib>Liang, Yumeng</creatorcontrib><creatorcontrib>Zhou, Anfu</creatorcontrib><creatorcontrib>Wen, Xinzhe</creatorcontrib><creatorcontrib>Huang, Wei</creatorcontrib><creatorcontrib>Shi, Pu</creatorcontrib><creatorcontrib>Pu, Lingyu</creatorcontrib><creatorcontrib>Zhang, Huanhuan</creatorcontrib><creatorcontrib>Ma, Huadong</creatorcontrib><title>airBP: Monitor Your Blood Pressure with Millimeter-Wave in the Air</title><title>ACM transactions on the internet of things</title><addtitle>ACM TIOT</addtitle><description>Blood pressure (BP), an important vital sign to assess human health, is expected to be monitored conveniently. The existing BP monitoring methods, either traditional cuff based or newly emerging wearable based, all require skin contact, which may cause unpleasant user experience and is even injurious to certain users. In this article, we explore contactless BP monitoring and propose airBP, which emits millimeter-wave signals toward a user’s wrist, and captures the reflected signal bounded off from the pulsating artery underlying the wrist. By analyzing the reflected signal strength of the signal, airBP generates the arterial pulse and further estimates BP by exploiting the relationship between the arterial pulse and BP. To realize airBP, we design a new beam-forming method to keep focusing on the tiny and hidden wrist artery, by leveraging the inherent periodicity of the arterial pulse. Moreover, we custom design a pre-training and neural network architecture, to combat the challenges from the arterial pulse sparsity and ambiguity, so as to estimate BP accurately. We prototype airBP using a coin-size commercial off-the-shelf millimeter-wave radar and perform extensive experiments on 41 subjects. The results demonstrate that airBP accurately estimates systolic and diastolic BP, with a mean error of –0.30 mmHg and –0.23 mmHg, as well as a standard deviation error of 4.80 mmHg and 3.79 mmHg (within the acceptable range regulated by the FDA’s AAMI protocol), respectively, at a distance up to 26 cm.</description><subject>Human-centered computing</subject><subject>Ubiquitous and mobile computing design and evaluation methods</subject><issn>2691-1914</issn><issn>2577-6207</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNo9j0tLAzEYRYMoWGpx7yo7V9F8eTbu2uILWuxCEVdDJpPQyEwjyVTx3zvS6upeuIcLB6FzoFcAQl5zBUJwc4RGTGpNFKP6eOjKAAED4hRNSnmnlDIOXEg9QnMb83x9g1dpG_uU8VvaZTxvU2rwOvtSdtnjr9hv8Cq2bex87zN5tZ8exy3uNx7PYj5DJ8G2xU8OOUYvd7fPiweyfLp_XMyWxDJueqKpBnDBazkNtVaNN94J1dQmUCqFscw2gRrmjDLBuFDXNZsKC4xKrYZd8jG63P-6nErJPlQfOXY2f1dAq1_76mA_kBd70rruH_obfwCwElLK</recordid><startdate>20231122</startdate><enddate>20231122</enddate><creator>Liang, Yumeng</creator><creator>Zhou, Anfu</creator><creator>Wen, Xinzhe</creator><creator>Huang, Wei</creator><creator>Shi, Pu</creator><creator>Pu, Lingyu</creator><creator>Zhang, Huanhuan</creator><creator>Ma, Huadong</creator><general>ACM</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-8785-3350</orcidid><orcidid>https://orcid.org/0009-0003-7908-1850</orcidid><orcidid>https://orcid.org/0000-0002-7199-5047</orcidid><orcidid>https://orcid.org/0009-0004-1930-8184</orcidid><orcidid>https://orcid.org/0000-0002-8330-0580</orcidid><orcidid>https://orcid.org/0000-0002-9254-8801</orcidid><orcidid>https://orcid.org/0000-0003-3956-093X</orcidid><orcidid>https://orcid.org/0009-0005-0909-6541</orcidid></search><sort><creationdate>20231122</creationdate><title>airBP: Monitor Your Blood Pressure with Millimeter-Wave in the Air</title><author>Liang, Yumeng ; Zhou, Anfu ; Wen, Xinzhe ; Huang, Wei ; Shi, Pu ; Pu, Lingyu ; Zhang, Huanhuan ; Ma, Huadong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a239t-70711cfe758fb76de9ec46db9f00549a2adf092c969f9cfbbb284a12057654953</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Human-centered computing</topic><topic>Ubiquitous and mobile computing design and evaluation methods</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liang, Yumeng</creatorcontrib><creatorcontrib>Zhou, Anfu</creatorcontrib><creatorcontrib>Wen, Xinzhe</creatorcontrib><creatorcontrib>Huang, Wei</creatorcontrib><creatorcontrib>Shi, Pu</creatorcontrib><creatorcontrib>Pu, Lingyu</creatorcontrib><creatorcontrib>Zhang, Huanhuan</creatorcontrib><creatorcontrib>Ma, Huadong</creatorcontrib><collection>CrossRef</collection><jtitle>ACM transactions on the internet of things</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liang, Yumeng</au><au>Zhou, Anfu</au><au>Wen, Xinzhe</au><au>Huang, Wei</au><au>Shi, Pu</au><au>Pu, Lingyu</au><au>Zhang, Huanhuan</au><au>Ma, Huadong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>airBP: Monitor Your Blood Pressure with Millimeter-Wave in the Air</atitle><jtitle>ACM transactions on the internet of things</jtitle><stitle>ACM TIOT</stitle><date>2023-11-22</date><risdate>2023</risdate><volume>4</volume><issue>4</issue><spage>1</spage><epage>32</epage><pages>1-32</pages><artnum>28</artnum><issn>2691-1914</issn><eissn>2577-6207</eissn><abstract>Blood pressure (BP), an important vital sign to assess human health, is expected to be monitored conveniently. The existing BP monitoring methods, either traditional cuff based or newly emerging wearable based, all require skin contact, which may cause unpleasant user experience and is even injurious to certain users. In this article, we explore contactless BP monitoring and propose airBP, which emits millimeter-wave signals toward a user’s wrist, and captures the reflected signal bounded off from the pulsating artery underlying the wrist. By analyzing the reflected signal strength of the signal, airBP generates the arterial pulse and further estimates BP by exploiting the relationship between the arterial pulse and BP. To realize airBP, we design a new beam-forming method to keep focusing on the tiny and hidden wrist artery, by leveraging the inherent periodicity of the arterial pulse. Moreover, we custom design a pre-training and neural network architecture, to combat the challenges from the arterial pulse sparsity and ambiguity, so as to estimate BP accurately. We prototype airBP using a coin-size commercial off-the-shelf millimeter-wave radar and perform extensive experiments on 41 subjects. The results demonstrate that airBP accurately estimates systolic and diastolic BP, with a mean error of –0.30 mmHg and –0.23 mmHg, as well as a standard deviation error of 4.80 mmHg and 3.79 mmHg (within the acceptable range regulated by the FDA’s AAMI protocol), respectively, at a distance up to 26 cm.</abstract><cop>New York, NY</cop><pub>ACM</pub><doi>10.1145/3614439</doi><tpages>32</tpages><orcidid>https://orcid.org/0000-0002-8785-3350</orcidid><orcidid>https://orcid.org/0009-0003-7908-1850</orcidid><orcidid>https://orcid.org/0000-0002-7199-5047</orcidid><orcidid>https://orcid.org/0009-0004-1930-8184</orcidid><orcidid>https://orcid.org/0000-0002-8330-0580</orcidid><orcidid>https://orcid.org/0000-0002-9254-8801</orcidid><orcidid>https://orcid.org/0000-0003-3956-093X</orcidid><orcidid>https://orcid.org/0009-0005-0909-6541</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2691-1914 |
ispartof | ACM transactions on the internet of things, 2023-11, Vol.4 (4), p.1-32, Article 28 |
issn | 2691-1914 2577-6207 |
language | eng |
recordid | cdi_crossref_primary_10_1145_3614439 |
source | ACM Digital Library Complete |
subjects | Human-centered computing Ubiquitous and mobile computing design and evaluation methods |
title | airBP: Monitor Your Blood Pressure with Millimeter-Wave in the Air |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T15%3A46%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-acm_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=airBP:%20Monitor%20Your%20Blood%20Pressure%20with%20Millimeter-Wave%20in%20the%20Air&rft.jtitle=ACM%20transactions%20on%20the%20internet%20of%20things&rft.au=Liang,%20Yumeng&rft.date=2023-11-22&rft.volume=4&rft.issue=4&rft.spage=1&rft.epage=32&rft.pages=1-32&rft.artnum=28&rft.issn=2691-1914&rft.eissn=2577-6207&rft_id=info:doi/10.1145/3614439&rft_dat=%3Cacm_cross%3E3614439%3C/acm_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |