Global Convergence of Localized Policy Iteration in Networked Multi-Agent Reinforcement Learning

We study a multi-agent reinforcement learning (MARL) problem where the agents interact over a given network. The goal of the agents is to cooperatively maximize the average of their entropy-regularized long-term rewards. To overcome the curse of dimensionality and to reduce communication, we propose...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Performance evaluation review 2023-06, Vol.51 (1), p.83-84
Hauptverfasser: Zhang, Yizhou, Qu, Guannan, Xu, Pan, Lin, Yiheng, Chen, Zaiwei, Wierman, Adam
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!