Coarse-to-Fine Knowledge-Enhanced Multi-Interest Learning Framework for Multi-Behavior Recommendation

Multi-types of behaviors (e.g., clicking, carting, purchasing, etc.) widely exist in most real-world recommendation scenarios, which are beneficial to learn users’ multi-faceted preferences. As dependencies are explicitly exhibited by the multiple types of behaviors, effectively modeling complex beh...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACM transactions on information systems 2023-08, Vol.42 (1), p.1-27, Article 30
Hauptverfasser: Meng, Chang, Zhao, Ziqi, Guo, Wei, Zhang, Yingxue, Wu, Haolun, Gao, Chen, Li, Dong, Li, Xiu, Tang, Ruiming
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 27
container_issue 1
container_start_page 1
container_title ACM transactions on information systems
container_volume 42
creator Meng, Chang
Zhao, Ziqi
Guo, Wei
Zhang, Yingxue
Wu, Haolun
Gao, Chen
Li, Dong
Li, Xiu
Tang, Ruiming
description Multi-types of behaviors (e.g., clicking, carting, purchasing, etc.) widely exist in most real-world recommendation scenarios, which are beneficial to learn users’ multi-faceted preferences. As dependencies are explicitly exhibited by the multiple types of behaviors, effectively modeling complex behavior dependencies is crucial for multi-behavior prediction. The state-of-the-art multi-behavior models learn behavior dependencies indistinguishably with all historical interactions as input. However, different behaviors may reflect different aspects of user preference, which means that some irrelevant interactions may play as noises to the target behavior to be predicted. To address the aforementioned limitations, we introduce multi-interest learning to the multi-behavior recommendation. More specifically, we propose a novel Coarse-to-fine Knowledge-enhanced Multi-interest Learning (CKML) framework to learn shared and behavior-specific interests for different behaviors. CKML introduces two advanced modules, namely Coarse-grained Interest Extracting (CIE) and Fine-grained Behavioral Correlation (FBC), which work jointly to capture fine-grained behavioral dependencies. CIE uses knowledge-aware information to extract initial representations of each interest. FBC incorporates a dynamic routing scheme to further assign each behavior among interests. Empirical results on three real-world datasets verify the effectiveness and efficiency of our model in exploiting multi-behavior data.
doi_str_mv 10.1145/3606369
format Article
fullrecord <record><control><sourceid>acm_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1145_3606369</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3606369</sourcerecordid><originalsourceid>FETCH-LOGICAL-a277t-e79785b46a4fcf4daa996533cbc8f674af3dd36bb545636d009146effe74aec43</originalsourceid><addsrcrecordid>eNo9kM1LAzEUxIMoWKt497Q3T9Gk-djsUUurxYogel7eJi_tajeRZLX437vS6mneMD8ezBByztkV51JdC8200NUBGXGlDJ0YbQ6Hm0lNDTfmmJzk_MbY4DUbEZxGSBlpH-m8DVg8hLjdoFshnYU1BIuuePzc9C1dhB4T5r5YIqTQhlUxT9DhNqb3wse0p25xDV_tYJ_Rxq7D4KBvYzglRx42Gc_2Oiav89nL9J4un-4W05slhUlZ9hTLqjSqkRqkt146gKrSSgjbWON1KcEL54RuGiXV0NExVnGp0XscMrRSjMnl7q9NMeeEvv5IbQfpu-as_l2n3q8zkBc7Emz3D_2FP3XnYNE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Coarse-to-Fine Knowledge-Enhanced Multi-Interest Learning Framework for Multi-Behavior Recommendation</title><source>ACM Digital Library Complete</source><creator>Meng, Chang ; Zhao, Ziqi ; Guo, Wei ; Zhang, Yingxue ; Wu, Haolun ; Gao, Chen ; Li, Dong ; Li, Xiu ; Tang, Ruiming</creator><creatorcontrib>Meng, Chang ; Zhao, Ziqi ; Guo, Wei ; Zhang, Yingxue ; Wu, Haolun ; Gao, Chen ; Li, Dong ; Li, Xiu ; Tang, Ruiming</creatorcontrib><description>Multi-types of behaviors (e.g., clicking, carting, purchasing, etc.) widely exist in most real-world recommendation scenarios, which are beneficial to learn users’ multi-faceted preferences. As dependencies are explicitly exhibited by the multiple types of behaviors, effectively modeling complex behavior dependencies is crucial for multi-behavior prediction. The state-of-the-art multi-behavior models learn behavior dependencies indistinguishably with all historical interactions as input. However, different behaviors may reflect different aspects of user preference, which means that some irrelevant interactions may play as noises to the target behavior to be predicted. To address the aforementioned limitations, we introduce multi-interest learning to the multi-behavior recommendation. More specifically, we propose a novel Coarse-to-fine Knowledge-enhanced Multi-interest Learning (CKML) framework to learn shared and behavior-specific interests for different behaviors. CKML introduces two advanced modules, namely Coarse-grained Interest Extracting (CIE) and Fine-grained Behavioral Correlation (FBC), which work jointly to capture fine-grained behavioral dependencies. CIE uses knowledge-aware information to extract initial representations of each interest. FBC incorporates a dynamic routing scheme to further assign each behavior among interests. Empirical results on three real-world datasets verify the effectiveness and efficiency of our model in exploiting multi-behavior data.</description><identifier>ISSN: 1046-8188</identifier><identifier>EISSN: 1558-2868</identifier><identifier>DOI: 10.1145/3606369</identifier><language>eng</language><publisher>New York, NY: ACM</publisher><subject>Information systems ; Recommender systems</subject><ispartof>ACM transactions on information systems, 2023-08, Vol.42 (1), p.1-27, Article 30</ispartof><rights>Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for third-party components of this work must be honored. For all other uses, contact the owner/author(s).</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a277t-e79785b46a4fcf4daa996533cbc8f674af3dd36bb545636d009146effe74aec43</citedby><cites>FETCH-LOGICAL-a277t-e79785b46a4fcf4daa996533cbc8f674af3dd36bb545636d009146effe74aec43</cites><orcidid>0000-0001-6255-1535 ; 0000-0002-7561-5646 ; 0000-0001-8616-0221 ; 0000-0002-8800-1483 ; 0000-0002-8370-3873 ; 0000-0003-0403-1923 ; 0009-0003-6776-3029 ; 0000-0002-2914-6527 ; 0000-0002-9224-2431</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://dl.acm.org/doi/pdf/10.1145/3606369$$EPDF$$P50$$Gacm$$Hfree_for_read</linktopdf><link.rule.ids>314,780,784,2280,27922,27923,40194,75998</link.rule.ids></links><search><creatorcontrib>Meng, Chang</creatorcontrib><creatorcontrib>Zhao, Ziqi</creatorcontrib><creatorcontrib>Guo, Wei</creatorcontrib><creatorcontrib>Zhang, Yingxue</creatorcontrib><creatorcontrib>Wu, Haolun</creatorcontrib><creatorcontrib>Gao, Chen</creatorcontrib><creatorcontrib>Li, Dong</creatorcontrib><creatorcontrib>Li, Xiu</creatorcontrib><creatorcontrib>Tang, Ruiming</creatorcontrib><title>Coarse-to-Fine Knowledge-Enhanced Multi-Interest Learning Framework for Multi-Behavior Recommendation</title><title>ACM transactions on information systems</title><addtitle>ACM TOIS</addtitle><description>Multi-types of behaviors (e.g., clicking, carting, purchasing, etc.) widely exist in most real-world recommendation scenarios, which are beneficial to learn users’ multi-faceted preferences. As dependencies are explicitly exhibited by the multiple types of behaviors, effectively modeling complex behavior dependencies is crucial for multi-behavior prediction. The state-of-the-art multi-behavior models learn behavior dependencies indistinguishably with all historical interactions as input. However, different behaviors may reflect different aspects of user preference, which means that some irrelevant interactions may play as noises to the target behavior to be predicted. To address the aforementioned limitations, we introduce multi-interest learning to the multi-behavior recommendation. More specifically, we propose a novel Coarse-to-fine Knowledge-enhanced Multi-interest Learning (CKML) framework to learn shared and behavior-specific interests for different behaviors. CKML introduces two advanced modules, namely Coarse-grained Interest Extracting (CIE) and Fine-grained Behavioral Correlation (FBC), which work jointly to capture fine-grained behavioral dependencies. CIE uses knowledge-aware information to extract initial representations of each interest. FBC incorporates a dynamic routing scheme to further assign each behavior among interests. Empirical results on three real-world datasets verify the effectiveness and efficiency of our model in exploiting multi-behavior data.</description><subject>Information systems</subject><subject>Recommender systems</subject><issn>1046-8188</issn><issn>1558-2868</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNo9kM1LAzEUxIMoWKt497Q3T9Gk-djsUUurxYogel7eJi_tajeRZLX437vS6mneMD8ezBByztkV51JdC8200NUBGXGlDJ0YbQ6Hm0lNDTfmmJzk_MbY4DUbEZxGSBlpH-m8DVg8hLjdoFshnYU1BIuuePzc9C1dhB4T5r5YIqTQhlUxT9DhNqb3wse0p25xDV_tYJ_Rxq7D4KBvYzglRx42Gc_2Oiav89nL9J4un-4W05slhUlZ9hTLqjSqkRqkt146gKrSSgjbWON1KcEL54RuGiXV0NExVnGp0XscMrRSjMnl7q9NMeeEvv5IbQfpu-as_l2n3q8zkBc7Emz3D_2FP3XnYNE</recordid><startdate>20230818</startdate><enddate>20230818</enddate><creator>Meng, Chang</creator><creator>Zhao, Ziqi</creator><creator>Guo, Wei</creator><creator>Zhang, Yingxue</creator><creator>Wu, Haolun</creator><creator>Gao, Chen</creator><creator>Li, Dong</creator><creator>Li, Xiu</creator><creator>Tang, Ruiming</creator><general>ACM</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0001-6255-1535</orcidid><orcidid>https://orcid.org/0000-0002-7561-5646</orcidid><orcidid>https://orcid.org/0000-0001-8616-0221</orcidid><orcidid>https://orcid.org/0000-0002-8800-1483</orcidid><orcidid>https://orcid.org/0000-0002-8370-3873</orcidid><orcidid>https://orcid.org/0000-0003-0403-1923</orcidid><orcidid>https://orcid.org/0009-0003-6776-3029</orcidid><orcidid>https://orcid.org/0000-0002-2914-6527</orcidid><orcidid>https://orcid.org/0000-0002-9224-2431</orcidid></search><sort><creationdate>20230818</creationdate><title>Coarse-to-Fine Knowledge-Enhanced Multi-Interest Learning Framework for Multi-Behavior Recommendation</title><author>Meng, Chang ; Zhao, Ziqi ; Guo, Wei ; Zhang, Yingxue ; Wu, Haolun ; Gao, Chen ; Li, Dong ; Li, Xiu ; Tang, Ruiming</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a277t-e79785b46a4fcf4daa996533cbc8f674af3dd36bb545636d009146effe74aec43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Information systems</topic><topic>Recommender systems</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Meng, Chang</creatorcontrib><creatorcontrib>Zhao, Ziqi</creatorcontrib><creatorcontrib>Guo, Wei</creatorcontrib><creatorcontrib>Zhang, Yingxue</creatorcontrib><creatorcontrib>Wu, Haolun</creatorcontrib><creatorcontrib>Gao, Chen</creatorcontrib><creatorcontrib>Li, Dong</creatorcontrib><creatorcontrib>Li, Xiu</creatorcontrib><creatorcontrib>Tang, Ruiming</creatorcontrib><collection>CrossRef</collection><jtitle>ACM transactions on information systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Meng, Chang</au><au>Zhao, Ziqi</au><au>Guo, Wei</au><au>Zhang, Yingxue</au><au>Wu, Haolun</au><au>Gao, Chen</au><au>Li, Dong</au><au>Li, Xiu</au><au>Tang, Ruiming</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Coarse-to-Fine Knowledge-Enhanced Multi-Interest Learning Framework for Multi-Behavior Recommendation</atitle><jtitle>ACM transactions on information systems</jtitle><stitle>ACM TOIS</stitle><date>2023-08-18</date><risdate>2023</risdate><volume>42</volume><issue>1</issue><spage>1</spage><epage>27</epage><pages>1-27</pages><artnum>30</artnum><issn>1046-8188</issn><eissn>1558-2868</eissn><abstract>Multi-types of behaviors (e.g., clicking, carting, purchasing, etc.) widely exist in most real-world recommendation scenarios, which are beneficial to learn users’ multi-faceted preferences. As dependencies are explicitly exhibited by the multiple types of behaviors, effectively modeling complex behavior dependencies is crucial for multi-behavior prediction. The state-of-the-art multi-behavior models learn behavior dependencies indistinguishably with all historical interactions as input. However, different behaviors may reflect different aspects of user preference, which means that some irrelevant interactions may play as noises to the target behavior to be predicted. To address the aforementioned limitations, we introduce multi-interest learning to the multi-behavior recommendation. More specifically, we propose a novel Coarse-to-fine Knowledge-enhanced Multi-interest Learning (CKML) framework to learn shared and behavior-specific interests for different behaviors. CKML introduces two advanced modules, namely Coarse-grained Interest Extracting (CIE) and Fine-grained Behavioral Correlation (FBC), which work jointly to capture fine-grained behavioral dependencies. CIE uses knowledge-aware information to extract initial representations of each interest. FBC incorporates a dynamic routing scheme to further assign each behavior among interests. Empirical results on three real-world datasets verify the effectiveness and efficiency of our model in exploiting multi-behavior data.</abstract><cop>New York, NY</cop><pub>ACM</pub><doi>10.1145/3606369</doi><tpages>27</tpages><orcidid>https://orcid.org/0000-0001-6255-1535</orcidid><orcidid>https://orcid.org/0000-0002-7561-5646</orcidid><orcidid>https://orcid.org/0000-0001-8616-0221</orcidid><orcidid>https://orcid.org/0000-0002-8800-1483</orcidid><orcidid>https://orcid.org/0000-0002-8370-3873</orcidid><orcidid>https://orcid.org/0000-0003-0403-1923</orcidid><orcidid>https://orcid.org/0009-0003-6776-3029</orcidid><orcidid>https://orcid.org/0000-0002-2914-6527</orcidid><orcidid>https://orcid.org/0000-0002-9224-2431</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1046-8188
ispartof ACM transactions on information systems, 2023-08, Vol.42 (1), p.1-27, Article 30
issn 1046-8188
1558-2868
language eng
recordid cdi_crossref_primary_10_1145_3606369
source ACM Digital Library Complete
subjects Information systems
Recommender systems
title Coarse-to-Fine Knowledge-Enhanced Multi-Interest Learning Framework for Multi-Behavior Recommendation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T08%3A26%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-acm_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Coarse-to-Fine%20Knowledge-Enhanced%20Multi-Interest%20Learning%20Framework%20for%20Multi-Behavior%20Recommendation&rft.jtitle=ACM%20transactions%20on%20information%20systems&rft.au=Meng,%20Chang&rft.date=2023-08-18&rft.volume=42&rft.issue=1&rft.spage=1&rft.epage=27&rft.pages=1-27&rft.artnum=30&rft.issn=1046-8188&rft.eissn=1558-2868&rft_id=info:doi/10.1145/3606369&rft_dat=%3Cacm_cross%3E3606369%3C/acm_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true