Coarse-to-Fine Knowledge-Enhanced Multi-Interest Learning Framework for Multi-Behavior Recommendation
Multi-types of behaviors (e.g., clicking, carting, purchasing, etc.) widely exist in most real-world recommendation scenarios, which are beneficial to learn users’ multi-faceted preferences. As dependencies are explicitly exhibited by the multiple types of behaviors, effectively modeling complex beh...
Gespeichert in:
Veröffentlicht in: | ACM transactions on information systems 2023-08, Vol.42 (1), p.1-27, Article 30 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 27 |
---|---|
container_issue | 1 |
container_start_page | 1 |
container_title | ACM transactions on information systems |
container_volume | 42 |
creator | Meng, Chang Zhao, Ziqi Guo, Wei Zhang, Yingxue Wu, Haolun Gao, Chen Li, Dong Li, Xiu Tang, Ruiming |
description | Multi-types of behaviors (e.g., clicking, carting, purchasing, etc.) widely exist in most real-world recommendation scenarios, which are beneficial to learn users’ multi-faceted preferences. As dependencies are explicitly exhibited by the multiple types of behaviors, effectively modeling complex behavior dependencies is crucial for multi-behavior prediction. The state-of-the-art multi-behavior models learn behavior dependencies indistinguishably with all historical interactions as input. However, different behaviors may reflect different aspects of user preference, which means that some irrelevant interactions may play as noises to the target behavior to be predicted. To address the aforementioned limitations, we introduce multi-interest learning to the multi-behavior recommendation. More specifically, we propose a novel Coarse-to-fine Knowledge-enhanced Multi-interest Learning (CKML) framework to learn shared and behavior-specific interests for different behaviors. CKML introduces two advanced modules, namely Coarse-grained Interest Extracting (CIE) and Fine-grained Behavioral Correlation (FBC), which work jointly to capture fine-grained behavioral dependencies. CIE uses knowledge-aware information to extract initial representations of each interest. FBC incorporates a dynamic routing scheme to further assign each behavior among interests. Empirical results on three real-world datasets verify the effectiveness and efficiency of our model in exploiting multi-behavior data. |
doi_str_mv | 10.1145/3606369 |
format | Article |
fullrecord | <record><control><sourceid>acm_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1145_3606369</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3606369</sourcerecordid><originalsourceid>FETCH-LOGICAL-a277t-e79785b46a4fcf4daa996533cbc8f674af3dd36bb545636d009146effe74aec43</originalsourceid><addsrcrecordid>eNo9kM1LAzEUxIMoWKt497Q3T9Gk-djsUUurxYogel7eJi_tajeRZLX437vS6mneMD8ezBByztkV51JdC8200NUBGXGlDJ0YbQ6Hm0lNDTfmmJzk_MbY4DUbEZxGSBlpH-m8DVg8hLjdoFshnYU1BIuuePzc9C1dhB4T5r5YIqTQhlUxT9DhNqb3wse0p25xDV_tYJ_Rxq7D4KBvYzglRx42Gc_2Oiav89nL9J4un-4W05slhUlZ9hTLqjSqkRqkt146gKrSSgjbWON1KcEL54RuGiXV0NExVnGp0XscMrRSjMnl7q9NMeeEvv5IbQfpu-as_l2n3q8zkBc7Emz3D_2FP3XnYNE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Coarse-to-Fine Knowledge-Enhanced Multi-Interest Learning Framework for Multi-Behavior Recommendation</title><source>ACM Digital Library Complete</source><creator>Meng, Chang ; Zhao, Ziqi ; Guo, Wei ; Zhang, Yingxue ; Wu, Haolun ; Gao, Chen ; Li, Dong ; Li, Xiu ; Tang, Ruiming</creator><creatorcontrib>Meng, Chang ; Zhao, Ziqi ; Guo, Wei ; Zhang, Yingxue ; Wu, Haolun ; Gao, Chen ; Li, Dong ; Li, Xiu ; Tang, Ruiming</creatorcontrib><description>Multi-types of behaviors (e.g., clicking, carting, purchasing, etc.) widely exist in most real-world recommendation scenarios, which are beneficial to learn users’ multi-faceted preferences. As dependencies are explicitly exhibited by the multiple types of behaviors, effectively modeling complex behavior dependencies is crucial for multi-behavior prediction. The state-of-the-art multi-behavior models learn behavior dependencies indistinguishably with all historical interactions as input. However, different behaviors may reflect different aspects of user preference, which means that some irrelevant interactions may play as noises to the target behavior to be predicted. To address the aforementioned limitations, we introduce multi-interest learning to the multi-behavior recommendation. More specifically, we propose a novel Coarse-to-fine Knowledge-enhanced Multi-interest Learning (CKML) framework to learn shared and behavior-specific interests for different behaviors. CKML introduces two advanced modules, namely Coarse-grained Interest Extracting (CIE) and Fine-grained Behavioral Correlation (FBC), which work jointly to capture fine-grained behavioral dependencies. CIE uses knowledge-aware information to extract initial representations of each interest. FBC incorporates a dynamic routing scheme to further assign each behavior among interests. Empirical results on three real-world datasets verify the effectiveness and efficiency of our model in exploiting multi-behavior data.</description><identifier>ISSN: 1046-8188</identifier><identifier>EISSN: 1558-2868</identifier><identifier>DOI: 10.1145/3606369</identifier><language>eng</language><publisher>New York, NY: ACM</publisher><subject>Information systems ; Recommender systems</subject><ispartof>ACM transactions on information systems, 2023-08, Vol.42 (1), p.1-27, Article 30</ispartof><rights>Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for third-party components of this work must be honored. For all other uses, contact the owner/author(s).</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a277t-e79785b46a4fcf4daa996533cbc8f674af3dd36bb545636d009146effe74aec43</citedby><cites>FETCH-LOGICAL-a277t-e79785b46a4fcf4daa996533cbc8f674af3dd36bb545636d009146effe74aec43</cites><orcidid>0000-0001-6255-1535 ; 0000-0002-7561-5646 ; 0000-0001-8616-0221 ; 0000-0002-8800-1483 ; 0000-0002-8370-3873 ; 0000-0003-0403-1923 ; 0009-0003-6776-3029 ; 0000-0002-2914-6527 ; 0000-0002-9224-2431</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://dl.acm.org/doi/pdf/10.1145/3606369$$EPDF$$P50$$Gacm$$Hfree_for_read</linktopdf><link.rule.ids>314,780,784,2280,27922,27923,40194,75998</link.rule.ids></links><search><creatorcontrib>Meng, Chang</creatorcontrib><creatorcontrib>Zhao, Ziqi</creatorcontrib><creatorcontrib>Guo, Wei</creatorcontrib><creatorcontrib>Zhang, Yingxue</creatorcontrib><creatorcontrib>Wu, Haolun</creatorcontrib><creatorcontrib>Gao, Chen</creatorcontrib><creatorcontrib>Li, Dong</creatorcontrib><creatorcontrib>Li, Xiu</creatorcontrib><creatorcontrib>Tang, Ruiming</creatorcontrib><title>Coarse-to-Fine Knowledge-Enhanced Multi-Interest Learning Framework for Multi-Behavior Recommendation</title><title>ACM transactions on information systems</title><addtitle>ACM TOIS</addtitle><description>Multi-types of behaviors (e.g., clicking, carting, purchasing, etc.) widely exist in most real-world recommendation scenarios, which are beneficial to learn users’ multi-faceted preferences. As dependencies are explicitly exhibited by the multiple types of behaviors, effectively modeling complex behavior dependencies is crucial for multi-behavior prediction. The state-of-the-art multi-behavior models learn behavior dependencies indistinguishably with all historical interactions as input. However, different behaviors may reflect different aspects of user preference, which means that some irrelevant interactions may play as noises to the target behavior to be predicted. To address the aforementioned limitations, we introduce multi-interest learning to the multi-behavior recommendation. More specifically, we propose a novel Coarse-to-fine Knowledge-enhanced Multi-interest Learning (CKML) framework to learn shared and behavior-specific interests for different behaviors. CKML introduces two advanced modules, namely Coarse-grained Interest Extracting (CIE) and Fine-grained Behavioral Correlation (FBC), which work jointly to capture fine-grained behavioral dependencies. CIE uses knowledge-aware information to extract initial representations of each interest. FBC incorporates a dynamic routing scheme to further assign each behavior among interests. Empirical results on three real-world datasets verify the effectiveness and efficiency of our model in exploiting multi-behavior data.</description><subject>Information systems</subject><subject>Recommender systems</subject><issn>1046-8188</issn><issn>1558-2868</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNo9kM1LAzEUxIMoWKt497Q3T9Gk-djsUUurxYogel7eJi_tajeRZLX437vS6mneMD8ezBByztkV51JdC8200NUBGXGlDJ0YbQ6Hm0lNDTfmmJzk_MbY4DUbEZxGSBlpH-m8DVg8hLjdoFshnYU1BIuuePzc9C1dhB4T5r5YIqTQhlUxT9DhNqb3wse0p25xDV_tYJ_Rxq7D4KBvYzglRx42Gc_2Oiav89nL9J4un-4W05slhUlZ9hTLqjSqkRqkt146gKrSSgjbWON1KcEL54RuGiXV0NExVnGp0XscMrRSjMnl7q9NMeeEvv5IbQfpu-as_l2n3q8zkBc7Emz3D_2FP3XnYNE</recordid><startdate>20230818</startdate><enddate>20230818</enddate><creator>Meng, Chang</creator><creator>Zhao, Ziqi</creator><creator>Guo, Wei</creator><creator>Zhang, Yingxue</creator><creator>Wu, Haolun</creator><creator>Gao, Chen</creator><creator>Li, Dong</creator><creator>Li, Xiu</creator><creator>Tang, Ruiming</creator><general>ACM</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0001-6255-1535</orcidid><orcidid>https://orcid.org/0000-0002-7561-5646</orcidid><orcidid>https://orcid.org/0000-0001-8616-0221</orcidid><orcidid>https://orcid.org/0000-0002-8800-1483</orcidid><orcidid>https://orcid.org/0000-0002-8370-3873</orcidid><orcidid>https://orcid.org/0000-0003-0403-1923</orcidid><orcidid>https://orcid.org/0009-0003-6776-3029</orcidid><orcidid>https://orcid.org/0000-0002-2914-6527</orcidid><orcidid>https://orcid.org/0000-0002-9224-2431</orcidid></search><sort><creationdate>20230818</creationdate><title>Coarse-to-Fine Knowledge-Enhanced Multi-Interest Learning Framework for Multi-Behavior Recommendation</title><author>Meng, Chang ; Zhao, Ziqi ; Guo, Wei ; Zhang, Yingxue ; Wu, Haolun ; Gao, Chen ; Li, Dong ; Li, Xiu ; Tang, Ruiming</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a277t-e79785b46a4fcf4daa996533cbc8f674af3dd36bb545636d009146effe74aec43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Information systems</topic><topic>Recommender systems</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Meng, Chang</creatorcontrib><creatorcontrib>Zhao, Ziqi</creatorcontrib><creatorcontrib>Guo, Wei</creatorcontrib><creatorcontrib>Zhang, Yingxue</creatorcontrib><creatorcontrib>Wu, Haolun</creatorcontrib><creatorcontrib>Gao, Chen</creatorcontrib><creatorcontrib>Li, Dong</creatorcontrib><creatorcontrib>Li, Xiu</creatorcontrib><creatorcontrib>Tang, Ruiming</creatorcontrib><collection>CrossRef</collection><jtitle>ACM transactions on information systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Meng, Chang</au><au>Zhao, Ziqi</au><au>Guo, Wei</au><au>Zhang, Yingxue</au><au>Wu, Haolun</au><au>Gao, Chen</au><au>Li, Dong</au><au>Li, Xiu</au><au>Tang, Ruiming</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Coarse-to-Fine Knowledge-Enhanced Multi-Interest Learning Framework for Multi-Behavior Recommendation</atitle><jtitle>ACM transactions on information systems</jtitle><stitle>ACM TOIS</stitle><date>2023-08-18</date><risdate>2023</risdate><volume>42</volume><issue>1</issue><spage>1</spage><epage>27</epage><pages>1-27</pages><artnum>30</artnum><issn>1046-8188</issn><eissn>1558-2868</eissn><abstract>Multi-types of behaviors (e.g., clicking, carting, purchasing, etc.) widely exist in most real-world recommendation scenarios, which are beneficial to learn users’ multi-faceted preferences. As dependencies are explicitly exhibited by the multiple types of behaviors, effectively modeling complex behavior dependencies is crucial for multi-behavior prediction. The state-of-the-art multi-behavior models learn behavior dependencies indistinguishably with all historical interactions as input. However, different behaviors may reflect different aspects of user preference, which means that some irrelevant interactions may play as noises to the target behavior to be predicted. To address the aforementioned limitations, we introduce multi-interest learning to the multi-behavior recommendation. More specifically, we propose a novel Coarse-to-fine Knowledge-enhanced Multi-interest Learning (CKML) framework to learn shared and behavior-specific interests for different behaviors. CKML introduces two advanced modules, namely Coarse-grained Interest Extracting (CIE) and Fine-grained Behavioral Correlation (FBC), which work jointly to capture fine-grained behavioral dependencies. CIE uses knowledge-aware information to extract initial representations of each interest. FBC incorporates a dynamic routing scheme to further assign each behavior among interests. Empirical results on three real-world datasets verify the effectiveness and efficiency of our model in exploiting multi-behavior data.</abstract><cop>New York, NY</cop><pub>ACM</pub><doi>10.1145/3606369</doi><tpages>27</tpages><orcidid>https://orcid.org/0000-0001-6255-1535</orcidid><orcidid>https://orcid.org/0000-0002-7561-5646</orcidid><orcidid>https://orcid.org/0000-0001-8616-0221</orcidid><orcidid>https://orcid.org/0000-0002-8800-1483</orcidid><orcidid>https://orcid.org/0000-0002-8370-3873</orcidid><orcidid>https://orcid.org/0000-0003-0403-1923</orcidid><orcidid>https://orcid.org/0009-0003-6776-3029</orcidid><orcidid>https://orcid.org/0000-0002-2914-6527</orcidid><orcidid>https://orcid.org/0000-0002-9224-2431</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1046-8188 |
ispartof | ACM transactions on information systems, 2023-08, Vol.42 (1), p.1-27, Article 30 |
issn | 1046-8188 1558-2868 |
language | eng |
recordid | cdi_crossref_primary_10_1145_3606369 |
source | ACM Digital Library Complete |
subjects | Information systems Recommender systems |
title | Coarse-to-Fine Knowledge-Enhanced Multi-Interest Learning Framework for Multi-Behavior Recommendation |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T08%3A26%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-acm_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Coarse-to-Fine%20Knowledge-Enhanced%20Multi-Interest%20Learning%20Framework%20for%20Multi-Behavior%20Recommendation&rft.jtitle=ACM%20transactions%20on%20information%20systems&rft.au=Meng,%20Chang&rft.date=2023-08-18&rft.volume=42&rft.issue=1&rft.spage=1&rft.epage=27&rft.pages=1-27&rft.artnum=30&rft.issn=1046-8188&rft.eissn=1558-2868&rft_id=info:doi/10.1145/3606369&rft_dat=%3Cacm_cross%3E3606369%3C/acm_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |