An Efficient and Accurate Detection of Fake News Using Capsule Transient Auto Encoder

Fake news is “news reports that are deliberatively and indisputably fake.” News that uses fake information is becoming a threat. It becomes challenging for humans to distinguish between fake and actual news. It has become necessary to detect fake news, which seeks to determine whether a news documen...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACM transactions on Asian and low-resource language information processing 2023-06, Vol.22 (6), p.1-22, Article 164
Hauptverfasser: Parte, Smita Athanere, Ratmele, Ankur, Dhanare, Ritesh
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 22
container_issue 6
container_start_page 1
container_title ACM transactions on Asian and low-resource language information processing
container_volume 22
creator Parte, Smita Athanere
Ratmele, Ankur
Dhanare, Ritesh
description Fake news is “news reports that are deliberatively and indisputably fake.” News that uses fake information is becoming a threat. It becomes challenging for humans to distinguish between fake and actual news. It has become necessary to detect fake news, which seeks to determine whether a news document can be believed. Detection of fake news faces challenges in accurate classification, making existing detection algorithms ineffective. In these issues, this article uses a novel Adaptive Capsule Transient Auto Encoder (ACTAE) for effectively detecting fake news. ACTAE is a combined approach of a classifier named Capsule Auto Encoder and an algorithm called Adaptive Transient Search Optimization Algorithm. The overall detection process is performed in various stages, including preprocessing, feature withdrawal, feature selection, and classification and optimization of weight parameters of the classifier for better results. The overall process is executed in Python, proving that ACTAE detects fake news with higher accuracy (99%) and lower error rate.
doi_str_mv 10.1145/3589184
format Article
fullrecord <record><control><sourceid>acm_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1145_3589184</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3589184</sourcerecordid><originalsourceid>FETCH-LOGICAL-a277t-e2a48879b4db0ec5d5d7b7fdc8bb4d9845f6f01a55797b213f569e84d7f8b7443</originalsourceid><addsrcrecordid>eNo9kDFPwzAQRi0EElWp2Jm8MQXsxI7tMQppQapgaebIsc8o0DqV7Qjx7ym0ZbpP97274SF0S8kDpYw_FlwqKtkFmuWF4BkTJL8851Kpa7SI8YMQQpkoS0JnqK08bpwbzAA-Ye0troyZgk6AnyCBScPo8ejwUn8CfoWviNs4-Hdc632ctoA3Qfv4d1tNacSNN6OFcIOunN5GWJzmHLXLZlM_Z-u31UtdrTOdC5EyyDWTUqie2Z6A4ZZb0QtnjewPKyUZd6UjVHMulOhzWjheKpDMCid7wVgxR_fHvyaMMQZw3T4MOx2-O0q6XyHdSciBvDuS2uz-oXP5Az_zWfQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>An Efficient and Accurate Detection of Fake News Using Capsule Transient Auto Encoder</title><source>ACM Digital Library Complete</source><creator>Parte, Smita Athanere ; Ratmele, Ankur ; Dhanare, Ritesh</creator><creatorcontrib>Parte, Smita Athanere ; Ratmele, Ankur ; Dhanare, Ritesh</creatorcontrib><description>Fake news is “news reports that are deliberatively and indisputably fake.” News that uses fake information is becoming a threat. It becomes challenging for humans to distinguish between fake and actual news. It has become necessary to detect fake news, which seeks to determine whether a news document can be believed. Detection of fake news faces challenges in accurate classification, making existing detection algorithms ineffective. In these issues, this article uses a novel Adaptive Capsule Transient Auto Encoder (ACTAE) for effectively detecting fake news. ACTAE is a combined approach of a classifier named Capsule Auto Encoder and an algorithm called Adaptive Transient Search Optimization Algorithm. The overall detection process is performed in various stages, including preprocessing, feature withdrawal, feature selection, and classification and optimization of weight parameters of the classifier for better results. The overall process is executed in Python, proving that ACTAE detects fake news with higher accuracy (99%) and lower error rate.</description><identifier>ISSN: 2375-4699</identifier><identifier>EISSN: 2375-4702</identifier><identifier>DOI: 10.1145/3589184</identifier><language>eng</language><publisher>New York, NY: ACM</publisher><subject>Computing methodologies ; Machine learning algorithms ; Neural networks</subject><ispartof>ACM transactions on Asian and low-resource language information processing, 2023-06, Vol.22 (6), p.1-22, Article 164</ispartof><rights>Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a277t-e2a48879b4db0ec5d5d7b7fdc8bb4d9845f6f01a55797b213f569e84d7f8b7443</citedby><cites>FETCH-LOGICAL-a277t-e2a48879b4db0ec5d5d7b7fdc8bb4d9845f6f01a55797b213f569e84d7f8b7443</cites><orcidid>0000-0002-5837-190X ; 0000-0003-2015-1386 ; 0000-0002-8167-7181</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://dl.acm.org/doi/pdf/10.1145/3589184$$EPDF$$P50$$Gacm$$H</linktopdf><link.rule.ids>314,776,780,2275,27902,27903,40174,75973</link.rule.ids></links><search><creatorcontrib>Parte, Smita Athanere</creatorcontrib><creatorcontrib>Ratmele, Ankur</creatorcontrib><creatorcontrib>Dhanare, Ritesh</creatorcontrib><title>An Efficient and Accurate Detection of Fake News Using Capsule Transient Auto Encoder</title><title>ACM transactions on Asian and low-resource language information processing</title><addtitle>ACM TALLIP</addtitle><description>Fake news is “news reports that are deliberatively and indisputably fake.” News that uses fake information is becoming a threat. It becomes challenging for humans to distinguish between fake and actual news. It has become necessary to detect fake news, which seeks to determine whether a news document can be believed. Detection of fake news faces challenges in accurate classification, making existing detection algorithms ineffective. In these issues, this article uses a novel Adaptive Capsule Transient Auto Encoder (ACTAE) for effectively detecting fake news. ACTAE is a combined approach of a classifier named Capsule Auto Encoder and an algorithm called Adaptive Transient Search Optimization Algorithm. The overall detection process is performed in various stages, including preprocessing, feature withdrawal, feature selection, and classification and optimization of weight parameters of the classifier for better results. The overall process is executed in Python, proving that ACTAE detects fake news with higher accuracy (99%) and lower error rate.</description><subject>Computing methodologies</subject><subject>Machine learning algorithms</subject><subject>Neural networks</subject><issn>2375-4699</issn><issn>2375-4702</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNo9kDFPwzAQRi0EElWp2Jm8MQXsxI7tMQppQapgaebIsc8o0DqV7Qjx7ym0ZbpP97274SF0S8kDpYw_FlwqKtkFmuWF4BkTJL8851Kpa7SI8YMQQpkoS0JnqK08bpwbzAA-Ye0troyZgk6AnyCBScPo8ejwUn8CfoWviNs4-Hdc632ctoA3Qfv4d1tNacSNN6OFcIOunN5GWJzmHLXLZlM_Z-u31UtdrTOdC5EyyDWTUqie2Z6A4ZZb0QtnjewPKyUZd6UjVHMulOhzWjheKpDMCid7wVgxR_fHvyaMMQZw3T4MOx2-O0q6XyHdSciBvDuS2uz-oXP5Az_zWfQ</recordid><startdate>20230617</startdate><enddate>20230617</enddate><creator>Parte, Smita Athanere</creator><creator>Ratmele, Ankur</creator><creator>Dhanare, Ritesh</creator><general>ACM</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-5837-190X</orcidid><orcidid>https://orcid.org/0000-0003-2015-1386</orcidid><orcidid>https://orcid.org/0000-0002-8167-7181</orcidid></search><sort><creationdate>20230617</creationdate><title>An Efficient and Accurate Detection of Fake News Using Capsule Transient Auto Encoder</title><author>Parte, Smita Athanere ; Ratmele, Ankur ; Dhanare, Ritesh</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a277t-e2a48879b4db0ec5d5d7b7fdc8bb4d9845f6f01a55797b213f569e84d7f8b7443</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Computing methodologies</topic><topic>Machine learning algorithms</topic><topic>Neural networks</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Parte, Smita Athanere</creatorcontrib><creatorcontrib>Ratmele, Ankur</creatorcontrib><creatorcontrib>Dhanare, Ritesh</creatorcontrib><collection>CrossRef</collection><jtitle>ACM transactions on Asian and low-resource language information processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Parte, Smita Athanere</au><au>Ratmele, Ankur</au><au>Dhanare, Ritesh</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An Efficient and Accurate Detection of Fake News Using Capsule Transient Auto Encoder</atitle><jtitle>ACM transactions on Asian and low-resource language information processing</jtitle><stitle>ACM TALLIP</stitle><date>2023-06-17</date><risdate>2023</risdate><volume>22</volume><issue>6</issue><spage>1</spage><epage>22</epage><pages>1-22</pages><artnum>164</artnum><issn>2375-4699</issn><eissn>2375-4702</eissn><abstract>Fake news is “news reports that are deliberatively and indisputably fake.” News that uses fake information is becoming a threat. It becomes challenging for humans to distinguish between fake and actual news. It has become necessary to detect fake news, which seeks to determine whether a news document can be believed. Detection of fake news faces challenges in accurate classification, making existing detection algorithms ineffective. In these issues, this article uses a novel Adaptive Capsule Transient Auto Encoder (ACTAE) for effectively detecting fake news. ACTAE is a combined approach of a classifier named Capsule Auto Encoder and an algorithm called Adaptive Transient Search Optimization Algorithm. The overall detection process is performed in various stages, including preprocessing, feature withdrawal, feature selection, and classification and optimization of weight parameters of the classifier for better results. The overall process is executed in Python, proving that ACTAE detects fake news with higher accuracy (99%) and lower error rate.</abstract><cop>New York, NY</cop><pub>ACM</pub><doi>10.1145/3589184</doi><tpages>22</tpages><orcidid>https://orcid.org/0000-0002-5837-190X</orcidid><orcidid>https://orcid.org/0000-0003-2015-1386</orcidid><orcidid>https://orcid.org/0000-0002-8167-7181</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2375-4699
ispartof ACM transactions on Asian and low-resource language information processing, 2023-06, Vol.22 (6), p.1-22, Article 164
issn 2375-4699
2375-4702
language eng
recordid cdi_crossref_primary_10_1145_3589184
source ACM Digital Library Complete
subjects Computing methodologies
Machine learning algorithms
Neural networks
title An Efficient and Accurate Detection of Fake News Using Capsule Transient Auto Encoder
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T09%3A03%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-acm_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20Efficient%20and%20Accurate%20Detection%20of%20Fake%20News%20Using%20Capsule%20Transient%20Auto%20Encoder&rft.jtitle=ACM%20transactions%20on%20Asian%20and%20low-resource%20language%20information%20processing&rft.au=Parte,%20Smita%20Athanere&rft.date=2023-06-17&rft.volume=22&rft.issue=6&rft.spage=1&rft.epage=22&rft.pages=1-22&rft.artnum=164&rft.issn=2375-4699&rft.eissn=2375-4702&rft_id=info:doi/10.1145/3589184&rft_dat=%3Cacm_cross%3E3589184%3C/acm_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true