A Survey on Event-Based News Narrative Extraction
Narratives are fundamental to our understanding of the world, providing us with a natural structure for knowledge representation over time. Computational narrative extraction is a subfield of artificial intelligence that makes heavy use of information retrieval and natural language processing techni...
Gespeichert in:
Veröffentlicht in: | ACM computing surveys 2023-07, Vol.55 (14s), p.1-39, Article 300 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 39 |
---|---|
container_issue | 14s |
container_start_page | 1 |
container_title | ACM computing surveys |
container_volume | 55 |
creator | Keith Norambuena, Brian Felipe Mitra, Tanushree North, Chris |
description | Narratives are fundamental to our understanding of the world, providing us with a natural structure for knowledge representation over time. Computational narrative extraction is a subfield of artificial intelligence that makes heavy use of information retrieval and natural language processing techniques. Despite the importance of computational narrative extraction, relatively little scholarly work exists on synthesizing previous research and strategizing future research in the area. In particular, this article focuses on extracting news narratives from an event-centric perspective. Extracting narratives from news data has multiple applications in understanding the evolving information landscape. This survey presents an extensive study of research in the area of event-based news narrative extraction. In particular, we screened more than 900 articles, which yielded 54 relevant articles. These articles are synthesized and organized by representation model, extraction criteria, and evaluation approaches. Based on the reviewed studies, we identify recent trends, open challenges, and potential research lines. |
doi_str_mv | 10.1145/3584741 |
format | Article |
fullrecord | <record><control><sourceid>acm_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1145_3584741</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3584741</sourcerecordid><originalsourceid>FETCH-LOGICAL-a277t-3896bddcfba56b2011e330adb4379cabadda12b298d650944e2368c1d8881ce43</originalsourceid><addsrcrecordid>eNo9j0tLw0AURgdRMFZx72p2rqL3Zp5Z1hIfUOpCXYc7j0DENjITo_33Kq2uvsV3OHAYO0e4QpTqWigrjcQDVqBSpjRC4iErQGgoQQAcs5OcXwGgkqgLhnP-9JGmuOXDhjdT3IzlDeUY-Cp-Zr6ilGjsp8ibrzGRH_thc8qOOnrL8Wy_M_Zy2zwv7svl493DYr4sqTJmLIWttQvBd46UdhUgRiGAgpPC1J4chUBYuaq2QSuopYyV0NZjsNaij1LM2OXO69OQc4pd-576NaVti9D-lrb70h_yYkeSX_9Df-c30N1MWg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>A Survey on Event-Based News Narrative Extraction</title><source>ACM Digital Library Complete</source><creator>Keith Norambuena, Brian Felipe ; Mitra, Tanushree ; North, Chris</creator><creatorcontrib>Keith Norambuena, Brian Felipe ; Mitra, Tanushree ; North, Chris</creatorcontrib><description>Narratives are fundamental to our understanding of the world, providing us with a natural structure for knowledge representation over time. Computational narrative extraction is a subfield of artificial intelligence that makes heavy use of information retrieval and natural language processing techniques. Despite the importance of computational narrative extraction, relatively little scholarly work exists on synthesizing previous research and strategizing future research in the area. In particular, this article focuses on extracting news narratives from an event-centric perspective. Extracting narratives from news data has multiple applications in understanding the evolving information landscape. This survey presents an extensive study of research in the area of event-based news narrative extraction. In particular, we screened more than 900 articles, which yielded 54 relevant articles. These articles are synthesized and organized by representation model, extraction criteria, and evaluation approaches. Based on the reviewed studies, we identify recent trends, open challenges, and potential research lines.</description><identifier>ISSN: 0360-0300</identifier><identifier>EISSN: 1557-7341</identifier><identifier>DOI: 10.1145/3584741</identifier><language>eng</language><publisher>New York, NY: ACM</publisher><subject>Computing methodologies ; General and reference ; Information extraction ; Knowledge representation and reasoning ; Surveys and overviews</subject><ispartof>ACM computing surveys, 2023-07, Vol.55 (14s), p.1-39, Article 300</ispartof><rights>Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for third-party components of this work must be honored. For all other uses, contact the owner/author(s).</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a277t-3896bddcfba56b2011e330adb4379cabadda12b298d650944e2368c1d8881ce43</citedby><cites>FETCH-LOGICAL-a277t-3896bddcfba56b2011e330adb4379cabadda12b298d650944e2368c1d8881ce43</cites><orcidid>0000-0001-5734-8962 ; 0000-0002-8786-7103 ; 0000-0002-9507-6192</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://dl.acm.org/doi/pdf/10.1145/3584741$$EPDF$$P50$$Gacm$$Hfree_for_read</linktopdf><link.rule.ids>314,780,784,2282,27924,27925,40196,76228</link.rule.ids></links><search><creatorcontrib>Keith Norambuena, Brian Felipe</creatorcontrib><creatorcontrib>Mitra, Tanushree</creatorcontrib><creatorcontrib>North, Chris</creatorcontrib><title>A Survey on Event-Based News Narrative Extraction</title><title>ACM computing surveys</title><addtitle>ACM CSUR</addtitle><description>Narratives are fundamental to our understanding of the world, providing us with a natural structure for knowledge representation over time. Computational narrative extraction is a subfield of artificial intelligence that makes heavy use of information retrieval and natural language processing techniques. Despite the importance of computational narrative extraction, relatively little scholarly work exists on synthesizing previous research and strategizing future research in the area. In particular, this article focuses on extracting news narratives from an event-centric perspective. Extracting narratives from news data has multiple applications in understanding the evolving information landscape. This survey presents an extensive study of research in the area of event-based news narrative extraction. In particular, we screened more than 900 articles, which yielded 54 relevant articles. These articles are synthesized and organized by representation model, extraction criteria, and evaluation approaches. Based on the reviewed studies, we identify recent trends, open challenges, and potential research lines.</description><subject>Computing methodologies</subject><subject>General and reference</subject><subject>Information extraction</subject><subject>Knowledge representation and reasoning</subject><subject>Surveys and overviews</subject><issn>0360-0300</issn><issn>1557-7341</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNo9j0tLw0AURgdRMFZx72p2rqL3Zp5Z1hIfUOpCXYc7j0DENjITo_33Kq2uvsV3OHAYO0e4QpTqWigrjcQDVqBSpjRC4iErQGgoQQAcs5OcXwGgkqgLhnP-9JGmuOXDhjdT3IzlDeUY-Cp-Zr6ilGjsp8ibrzGRH_thc8qOOnrL8Wy_M_Zy2zwv7svl493DYr4sqTJmLIWttQvBd46UdhUgRiGAgpPC1J4chUBYuaq2QSuopYyV0NZjsNaij1LM2OXO69OQc4pd-576NaVti9D-lrb70h_yYkeSX_9Df-c30N1MWg</recordid><startdate>20230717</startdate><enddate>20230717</enddate><creator>Keith Norambuena, Brian Felipe</creator><creator>Mitra, Tanushree</creator><creator>North, Chris</creator><general>ACM</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0001-5734-8962</orcidid><orcidid>https://orcid.org/0000-0002-8786-7103</orcidid><orcidid>https://orcid.org/0000-0002-9507-6192</orcidid></search><sort><creationdate>20230717</creationdate><title>A Survey on Event-Based News Narrative Extraction</title><author>Keith Norambuena, Brian Felipe ; Mitra, Tanushree ; North, Chris</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a277t-3896bddcfba56b2011e330adb4379cabadda12b298d650944e2368c1d8881ce43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Computing methodologies</topic><topic>General and reference</topic><topic>Information extraction</topic><topic>Knowledge representation and reasoning</topic><topic>Surveys and overviews</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Keith Norambuena, Brian Felipe</creatorcontrib><creatorcontrib>Mitra, Tanushree</creatorcontrib><creatorcontrib>North, Chris</creatorcontrib><collection>CrossRef</collection><jtitle>ACM computing surveys</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Keith Norambuena, Brian Felipe</au><au>Mitra, Tanushree</au><au>North, Chris</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Survey on Event-Based News Narrative Extraction</atitle><jtitle>ACM computing surveys</jtitle><stitle>ACM CSUR</stitle><date>2023-07-17</date><risdate>2023</risdate><volume>55</volume><issue>14s</issue><spage>1</spage><epage>39</epage><pages>1-39</pages><artnum>300</artnum><issn>0360-0300</issn><eissn>1557-7341</eissn><abstract>Narratives are fundamental to our understanding of the world, providing us with a natural structure for knowledge representation over time. Computational narrative extraction is a subfield of artificial intelligence that makes heavy use of information retrieval and natural language processing techniques. Despite the importance of computational narrative extraction, relatively little scholarly work exists on synthesizing previous research and strategizing future research in the area. In particular, this article focuses on extracting news narratives from an event-centric perspective. Extracting narratives from news data has multiple applications in understanding the evolving information landscape. This survey presents an extensive study of research in the area of event-based news narrative extraction. In particular, we screened more than 900 articles, which yielded 54 relevant articles. These articles are synthesized and organized by representation model, extraction criteria, and evaluation approaches. Based on the reviewed studies, we identify recent trends, open challenges, and potential research lines.</abstract><cop>New York, NY</cop><pub>ACM</pub><doi>10.1145/3584741</doi><tpages>39</tpages><orcidid>https://orcid.org/0000-0001-5734-8962</orcidid><orcidid>https://orcid.org/0000-0002-8786-7103</orcidid><orcidid>https://orcid.org/0000-0002-9507-6192</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0360-0300 |
ispartof | ACM computing surveys, 2023-07, Vol.55 (14s), p.1-39, Article 300 |
issn | 0360-0300 1557-7341 |
language | eng |
recordid | cdi_crossref_primary_10_1145_3584741 |
source | ACM Digital Library Complete |
subjects | Computing methodologies General and reference Information extraction Knowledge representation and reasoning Surveys and overviews |
title | A Survey on Event-Based News Narrative Extraction |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T12%3A52%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-acm_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Survey%20on%20Event-Based%20News%20Narrative%20Extraction&rft.jtitle=ACM%20computing%20surveys&rft.au=Keith%20Norambuena,%20Brian%20Felipe&rft.date=2023-07-17&rft.volume=55&rft.issue=14s&rft.spage=1&rft.epage=39&rft.pages=1-39&rft.artnum=300&rft.issn=0360-0300&rft.eissn=1557-7341&rft_id=info:doi/10.1145/3584741&rft_dat=%3Cacm_cross%3E3584741%3C/acm_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |