A Survey on Event-Based News Narrative Extraction

Narratives are fundamental to our understanding of the world, providing us with a natural structure for knowledge representation over time. Computational narrative extraction is a subfield of artificial intelligence that makes heavy use of information retrieval and natural language processing techni...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACM computing surveys 2023-07, Vol.55 (14s), p.1-39, Article 300
Hauptverfasser: Keith Norambuena, Brian Felipe, Mitra, Tanushree, North, Chris
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 39
container_issue 14s
container_start_page 1
container_title ACM computing surveys
container_volume 55
creator Keith Norambuena, Brian Felipe
Mitra, Tanushree
North, Chris
description Narratives are fundamental to our understanding of the world, providing us with a natural structure for knowledge representation over time. Computational narrative extraction is a subfield of artificial intelligence that makes heavy use of information retrieval and natural language processing techniques. Despite the importance of computational narrative extraction, relatively little scholarly work exists on synthesizing previous research and strategizing future research in the area. In particular, this article focuses on extracting news narratives from an event-centric perspective. Extracting narratives from news data has multiple applications in understanding the evolving information landscape. This survey presents an extensive study of research in the area of event-based news narrative extraction. In particular, we screened more than 900 articles, which yielded 54 relevant articles. These articles are synthesized and organized by representation model, extraction criteria, and evaluation approaches. Based on the reviewed studies, we identify recent trends, open challenges, and potential research lines.
doi_str_mv 10.1145/3584741
format Article
fullrecord <record><control><sourceid>acm_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1145_3584741</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3584741</sourcerecordid><originalsourceid>FETCH-LOGICAL-a277t-3896bddcfba56b2011e330adb4379cabadda12b298d650944e2368c1d8881ce43</originalsourceid><addsrcrecordid>eNo9j0tLw0AURgdRMFZx72p2rqL3Zp5Z1hIfUOpCXYc7j0DENjITo_33Kq2uvsV3OHAYO0e4QpTqWigrjcQDVqBSpjRC4iErQGgoQQAcs5OcXwGgkqgLhnP-9JGmuOXDhjdT3IzlDeUY-Cp-Zr6ilGjsp8ibrzGRH_thc8qOOnrL8Wy_M_Zy2zwv7svl493DYr4sqTJmLIWttQvBd46UdhUgRiGAgpPC1J4chUBYuaq2QSuopYyV0NZjsNaij1LM2OXO69OQc4pd-576NaVti9D-lrb70h_yYkeSX_9Df-c30N1MWg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>A Survey on Event-Based News Narrative Extraction</title><source>ACM Digital Library Complete</source><creator>Keith Norambuena, Brian Felipe ; Mitra, Tanushree ; North, Chris</creator><creatorcontrib>Keith Norambuena, Brian Felipe ; Mitra, Tanushree ; North, Chris</creatorcontrib><description>Narratives are fundamental to our understanding of the world, providing us with a natural structure for knowledge representation over time. Computational narrative extraction is a subfield of artificial intelligence that makes heavy use of information retrieval and natural language processing techniques. Despite the importance of computational narrative extraction, relatively little scholarly work exists on synthesizing previous research and strategizing future research in the area. In particular, this article focuses on extracting news narratives from an event-centric perspective. Extracting narratives from news data has multiple applications in understanding the evolving information landscape. This survey presents an extensive study of research in the area of event-based news narrative extraction. In particular, we screened more than 900 articles, which yielded 54 relevant articles. These articles are synthesized and organized by representation model, extraction criteria, and evaluation approaches. Based on the reviewed studies, we identify recent trends, open challenges, and potential research lines.</description><identifier>ISSN: 0360-0300</identifier><identifier>EISSN: 1557-7341</identifier><identifier>DOI: 10.1145/3584741</identifier><language>eng</language><publisher>New York, NY: ACM</publisher><subject>Computing methodologies ; General and reference ; Information extraction ; Knowledge representation and reasoning ; Surveys and overviews</subject><ispartof>ACM computing surveys, 2023-07, Vol.55 (14s), p.1-39, Article 300</ispartof><rights>Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for third-party components of this work must be honored. For all other uses, contact the owner/author(s).</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a277t-3896bddcfba56b2011e330adb4379cabadda12b298d650944e2368c1d8881ce43</citedby><cites>FETCH-LOGICAL-a277t-3896bddcfba56b2011e330adb4379cabadda12b298d650944e2368c1d8881ce43</cites><orcidid>0000-0001-5734-8962 ; 0000-0002-8786-7103 ; 0000-0002-9507-6192</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://dl.acm.org/doi/pdf/10.1145/3584741$$EPDF$$P50$$Gacm$$Hfree_for_read</linktopdf><link.rule.ids>314,780,784,2282,27924,27925,40196,76228</link.rule.ids></links><search><creatorcontrib>Keith Norambuena, Brian Felipe</creatorcontrib><creatorcontrib>Mitra, Tanushree</creatorcontrib><creatorcontrib>North, Chris</creatorcontrib><title>A Survey on Event-Based News Narrative Extraction</title><title>ACM computing surveys</title><addtitle>ACM CSUR</addtitle><description>Narratives are fundamental to our understanding of the world, providing us with a natural structure for knowledge representation over time. Computational narrative extraction is a subfield of artificial intelligence that makes heavy use of information retrieval and natural language processing techniques. Despite the importance of computational narrative extraction, relatively little scholarly work exists on synthesizing previous research and strategizing future research in the area. In particular, this article focuses on extracting news narratives from an event-centric perspective. Extracting narratives from news data has multiple applications in understanding the evolving information landscape. This survey presents an extensive study of research in the area of event-based news narrative extraction. In particular, we screened more than 900 articles, which yielded 54 relevant articles. These articles are synthesized and organized by representation model, extraction criteria, and evaluation approaches. Based on the reviewed studies, we identify recent trends, open challenges, and potential research lines.</description><subject>Computing methodologies</subject><subject>General and reference</subject><subject>Information extraction</subject><subject>Knowledge representation and reasoning</subject><subject>Surveys and overviews</subject><issn>0360-0300</issn><issn>1557-7341</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNo9j0tLw0AURgdRMFZx72p2rqL3Zp5Z1hIfUOpCXYc7j0DENjITo_33Kq2uvsV3OHAYO0e4QpTqWigrjcQDVqBSpjRC4iErQGgoQQAcs5OcXwGgkqgLhnP-9JGmuOXDhjdT3IzlDeUY-Cp-Zr6ilGjsp8ibrzGRH_thc8qOOnrL8Wy_M_Zy2zwv7svl493DYr4sqTJmLIWttQvBd46UdhUgRiGAgpPC1J4chUBYuaq2QSuopYyV0NZjsNaij1LM2OXO69OQc4pd-576NaVti9D-lrb70h_yYkeSX_9Df-c30N1MWg</recordid><startdate>20230717</startdate><enddate>20230717</enddate><creator>Keith Norambuena, Brian Felipe</creator><creator>Mitra, Tanushree</creator><creator>North, Chris</creator><general>ACM</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0001-5734-8962</orcidid><orcidid>https://orcid.org/0000-0002-8786-7103</orcidid><orcidid>https://orcid.org/0000-0002-9507-6192</orcidid></search><sort><creationdate>20230717</creationdate><title>A Survey on Event-Based News Narrative Extraction</title><author>Keith Norambuena, Brian Felipe ; Mitra, Tanushree ; North, Chris</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a277t-3896bddcfba56b2011e330adb4379cabadda12b298d650944e2368c1d8881ce43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Computing methodologies</topic><topic>General and reference</topic><topic>Information extraction</topic><topic>Knowledge representation and reasoning</topic><topic>Surveys and overviews</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Keith Norambuena, Brian Felipe</creatorcontrib><creatorcontrib>Mitra, Tanushree</creatorcontrib><creatorcontrib>North, Chris</creatorcontrib><collection>CrossRef</collection><jtitle>ACM computing surveys</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Keith Norambuena, Brian Felipe</au><au>Mitra, Tanushree</au><au>North, Chris</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Survey on Event-Based News Narrative Extraction</atitle><jtitle>ACM computing surveys</jtitle><stitle>ACM CSUR</stitle><date>2023-07-17</date><risdate>2023</risdate><volume>55</volume><issue>14s</issue><spage>1</spage><epage>39</epage><pages>1-39</pages><artnum>300</artnum><issn>0360-0300</issn><eissn>1557-7341</eissn><abstract>Narratives are fundamental to our understanding of the world, providing us with a natural structure for knowledge representation over time. Computational narrative extraction is a subfield of artificial intelligence that makes heavy use of information retrieval and natural language processing techniques. Despite the importance of computational narrative extraction, relatively little scholarly work exists on synthesizing previous research and strategizing future research in the area. In particular, this article focuses on extracting news narratives from an event-centric perspective. Extracting narratives from news data has multiple applications in understanding the evolving information landscape. This survey presents an extensive study of research in the area of event-based news narrative extraction. In particular, we screened more than 900 articles, which yielded 54 relevant articles. These articles are synthesized and organized by representation model, extraction criteria, and evaluation approaches. Based on the reviewed studies, we identify recent trends, open challenges, and potential research lines.</abstract><cop>New York, NY</cop><pub>ACM</pub><doi>10.1145/3584741</doi><tpages>39</tpages><orcidid>https://orcid.org/0000-0001-5734-8962</orcidid><orcidid>https://orcid.org/0000-0002-8786-7103</orcidid><orcidid>https://orcid.org/0000-0002-9507-6192</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0360-0300
ispartof ACM computing surveys, 2023-07, Vol.55 (14s), p.1-39, Article 300
issn 0360-0300
1557-7341
language eng
recordid cdi_crossref_primary_10_1145_3584741
source ACM Digital Library Complete
subjects Computing methodologies
General and reference
Information extraction
Knowledge representation and reasoning
Surveys and overviews
title A Survey on Event-Based News Narrative Extraction
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T12%3A52%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-acm_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Survey%20on%20Event-Based%20News%20Narrative%20Extraction&rft.jtitle=ACM%20computing%20surveys&rft.au=Keith%20Norambuena,%20Brian%20Felipe&rft.date=2023-07-17&rft.volume=55&rft.issue=14s&rft.spage=1&rft.epage=39&rft.pages=1-39&rft.artnum=300&rft.issn=0360-0300&rft.eissn=1557-7341&rft_id=info:doi/10.1145/3584741&rft_dat=%3Cacm_cross%3E3584741%3C/acm_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true