Clinician-Facing AI in the Wild: Taking Stock of the Sociotechnical Challenges and Opportunities for HCI
Artificial Intelligence (AI) in medical applications holds great promise. However, the use of Machine Learning-based (ML) systems in clinical practice is still minimal. It is uniquely difficult to introduce clinician-facing ML-based systems in practice, which has been recognised in HCI and related f...
Gespeichert in:
Veröffentlicht in: | ACM transactions on computer-human interaction 2023-03, Vol.30 (2), p.1-39, Article 33 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 39 |
---|---|
container_issue | 2 |
container_start_page | 1 |
container_title | ACM transactions on computer-human interaction |
container_volume | 30 |
creator | Zając, Hubert D. Li, Dana Dai, Xiang Carlsen, Jonathan F. Kensing, Finn Andersen, Tariq O. |
description | Artificial Intelligence (AI) in medical applications holds great promise. However, the use of Machine Learning-based (ML) systems in clinical practice is still minimal. It is uniquely difficult to introduce clinician-facing ML-based systems in practice, which has been recognised in HCI and related fields. Recent publications have begun to address the sociotechnical challenges of designing, developing, and successfully deploying clinician-facing ML-based systems. We conducted a qualitative systematic review and provided answers to the question: “How can HCI researchers and practitioners contribute to the successful realisation of ML in medical practice?” We reviewed 25 eligible papers that investigated the real-world clinical implications of concrete clinician-facing ML-based systems. The main contributions of this systematic review are: (1) an overview of the technical aspects of ML innovation and their consequences for HCI researchers and practitioners; (2) a description of the different roles that ML-based systems can take in clinical settings; (3) a conceptualisation of the main activities of medical ML innovation processes; (4) identification of five sociotechnical interdependencies that emerge from medical ML innovation; and (5) implications for HCI researchers and practitioners on how to mitigate the sociotechnical challenges of medical ML innovation. |
doi_str_mv | 10.1145/3582430 |
format | Article |
fullrecord | <record><control><sourceid>acm_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1145_3582430</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3582430</sourcerecordid><originalsourceid>FETCH-LOGICAL-a277t-23e2848662147bbbeb7ca8fbb81923119c226f56ace4ddae6198b333989de8653</originalsourceid><addsrcrecordid>eNo9kL1PwzAUxC0EEqUgdiZvTAF_xB9hqyJKK1Xq0CLG6NlxGtPUjpIw8N-T0sJ0T3e_d8MhdE_JE6WpeOZCs5STCzShQqhEcSYux5sonhBB5TW66ftPQghVMp2gOm988NZDSOZgfdjh2RL7gIfa4Q_flC94C_ujvRmi3eNY_SabaH0cnK3HV2hwXkPTuLBzPYZQ4nXbxm74Cn7wo1PFDi_y5S26qqDp3d1Zp-h9_rrNF8lq_bbMZ6sEmFJDwrhjOtVSMpoqY4wzyoKujNE0Y5zSzDImKyHBurQswUmaacM5z3RWOi0Fn6LHU6_tYt93rirazh-g-y4oKY4DFeeBRvLhRII9_EN_4Q_awF9P</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Clinician-Facing AI in the Wild: Taking Stock of the Sociotechnical Challenges and Opportunities for HCI</title><source>ACM Digital Library</source><creator>Zając, Hubert D. ; Li, Dana ; Dai, Xiang ; Carlsen, Jonathan F. ; Kensing, Finn ; Andersen, Tariq O.</creator><creatorcontrib>Zając, Hubert D. ; Li, Dana ; Dai, Xiang ; Carlsen, Jonathan F. ; Kensing, Finn ; Andersen, Tariq O.</creatorcontrib><description>Artificial Intelligence (AI) in medical applications holds great promise. However, the use of Machine Learning-based (ML) systems in clinical practice is still minimal. It is uniquely difficult to introduce clinician-facing ML-based systems in practice, which has been recognised in HCI and related fields. Recent publications have begun to address the sociotechnical challenges of designing, developing, and successfully deploying clinician-facing ML-based systems. We conducted a qualitative systematic review and provided answers to the question: “How can HCI researchers and practitioners contribute to the successful realisation of ML in medical practice?” We reviewed 25 eligible papers that investigated the real-world clinical implications of concrete clinician-facing ML-based systems. The main contributions of this systematic review are: (1) an overview of the technical aspects of ML innovation and their consequences for HCI researchers and practitioners; (2) a description of the different roles that ML-based systems can take in clinical settings; (3) a conceptualisation of the main activities of medical ML innovation processes; (4) identification of five sociotechnical interdependencies that emerge from medical ML innovation; and (5) implications for HCI researchers and practitioners on how to mitigate the sociotechnical challenges of medical ML innovation.</description><identifier>ISSN: 1073-0516</identifier><identifier>EISSN: 1557-7325</identifier><identifier>DOI: 10.1145/3582430</identifier><language>eng</language><publisher>New York, NY: ACM</publisher><subject>HCI theory, concepts and models ; Human-centered computing</subject><ispartof>ACM transactions on computer-human interaction, 2023-03, Vol.30 (2), p.1-39, Article 33</ispartof><rights>Copyright held by the owner/author(s).</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a277t-23e2848662147bbbeb7ca8fbb81923119c226f56ace4ddae6198b333989de8653</citedby><cites>FETCH-LOGICAL-a277t-23e2848662147bbbeb7ca8fbb81923119c226f56ace4ddae6198b333989de8653</cites><orcidid>0000-0002-6724-7281 ; 0000-0002-1392-5999 ; 0000-0002-9342-5520 ; 0000-0001-9675-3418 ; 0000-0002-6020-9688 ; 0000-0003-0689-6912</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://dl.acm.org/doi/pdf/10.1145/3582430$$EPDF$$P50$$Gacm$$Hfree_for_read</linktopdf><link.rule.ids>314,777,781,2276,27905,27906,40177,75977</link.rule.ids></links><search><creatorcontrib>Zając, Hubert D.</creatorcontrib><creatorcontrib>Li, Dana</creatorcontrib><creatorcontrib>Dai, Xiang</creatorcontrib><creatorcontrib>Carlsen, Jonathan F.</creatorcontrib><creatorcontrib>Kensing, Finn</creatorcontrib><creatorcontrib>Andersen, Tariq O.</creatorcontrib><title>Clinician-Facing AI in the Wild: Taking Stock of the Sociotechnical Challenges and Opportunities for HCI</title><title>ACM transactions on computer-human interaction</title><addtitle>ACM TOCHI</addtitle><description>Artificial Intelligence (AI) in medical applications holds great promise. However, the use of Machine Learning-based (ML) systems in clinical practice is still minimal. It is uniquely difficult to introduce clinician-facing ML-based systems in practice, which has been recognised in HCI and related fields. Recent publications have begun to address the sociotechnical challenges of designing, developing, and successfully deploying clinician-facing ML-based systems. We conducted a qualitative systematic review and provided answers to the question: “How can HCI researchers and practitioners contribute to the successful realisation of ML in medical practice?” We reviewed 25 eligible papers that investigated the real-world clinical implications of concrete clinician-facing ML-based systems. The main contributions of this systematic review are: (1) an overview of the technical aspects of ML innovation and their consequences for HCI researchers and practitioners; (2) a description of the different roles that ML-based systems can take in clinical settings; (3) a conceptualisation of the main activities of medical ML innovation processes; (4) identification of five sociotechnical interdependencies that emerge from medical ML innovation; and (5) implications for HCI researchers and practitioners on how to mitigate the sociotechnical challenges of medical ML innovation.</description><subject>HCI theory, concepts and models</subject><subject>Human-centered computing</subject><issn>1073-0516</issn><issn>1557-7325</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNo9kL1PwzAUxC0EEqUgdiZvTAF_xB9hqyJKK1Xq0CLG6NlxGtPUjpIw8N-T0sJ0T3e_d8MhdE_JE6WpeOZCs5STCzShQqhEcSYux5sonhBB5TW66ftPQghVMp2gOm988NZDSOZgfdjh2RL7gIfa4Q_flC94C_ujvRmi3eNY_SabaH0cnK3HV2hwXkPTuLBzPYZQ4nXbxm74Cn7wo1PFDi_y5S26qqDp3d1Zp-h9_rrNF8lq_bbMZ6sEmFJDwrhjOtVSMpoqY4wzyoKujNE0Y5zSzDImKyHBurQswUmaacM5z3RWOi0Fn6LHU6_tYt93rirazh-g-y4oKY4DFeeBRvLhRII9_EN_4Q_awF9P</recordid><startdate>20230317</startdate><enddate>20230317</enddate><creator>Zając, Hubert D.</creator><creator>Li, Dana</creator><creator>Dai, Xiang</creator><creator>Carlsen, Jonathan F.</creator><creator>Kensing, Finn</creator><creator>Andersen, Tariq O.</creator><general>ACM</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-6724-7281</orcidid><orcidid>https://orcid.org/0000-0002-1392-5999</orcidid><orcidid>https://orcid.org/0000-0002-9342-5520</orcidid><orcidid>https://orcid.org/0000-0001-9675-3418</orcidid><orcidid>https://orcid.org/0000-0002-6020-9688</orcidid><orcidid>https://orcid.org/0000-0003-0689-6912</orcidid></search><sort><creationdate>20230317</creationdate><title>Clinician-Facing AI in the Wild: Taking Stock of the Sociotechnical Challenges and Opportunities for HCI</title><author>Zając, Hubert D. ; Li, Dana ; Dai, Xiang ; Carlsen, Jonathan F. ; Kensing, Finn ; Andersen, Tariq O.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a277t-23e2848662147bbbeb7ca8fbb81923119c226f56ace4ddae6198b333989de8653</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>HCI theory, concepts and models</topic><topic>Human-centered computing</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zając, Hubert D.</creatorcontrib><creatorcontrib>Li, Dana</creatorcontrib><creatorcontrib>Dai, Xiang</creatorcontrib><creatorcontrib>Carlsen, Jonathan F.</creatorcontrib><creatorcontrib>Kensing, Finn</creatorcontrib><creatorcontrib>Andersen, Tariq O.</creatorcontrib><collection>CrossRef</collection><jtitle>ACM transactions on computer-human interaction</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zając, Hubert D.</au><au>Li, Dana</au><au>Dai, Xiang</au><au>Carlsen, Jonathan F.</au><au>Kensing, Finn</au><au>Andersen, Tariq O.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Clinician-Facing AI in the Wild: Taking Stock of the Sociotechnical Challenges and Opportunities for HCI</atitle><jtitle>ACM transactions on computer-human interaction</jtitle><stitle>ACM TOCHI</stitle><date>2023-03-17</date><risdate>2023</risdate><volume>30</volume><issue>2</issue><spage>1</spage><epage>39</epage><pages>1-39</pages><artnum>33</artnum><issn>1073-0516</issn><eissn>1557-7325</eissn><abstract>Artificial Intelligence (AI) in medical applications holds great promise. However, the use of Machine Learning-based (ML) systems in clinical practice is still minimal. It is uniquely difficult to introduce clinician-facing ML-based systems in practice, which has been recognised in HCI and related fields. Recent publications have begun to address the sociotechnical challenges of designing, developing, and successfully deploying clinician-facing ML-based systems. We conducted a qualitative systematic review and provided answers to the question: “How can HCI researchers and practitioners contribute to the successful realisation of ML in medical practice?” We reviewed 25 eligible papers that investigated the real-world clinical implications of concrete clinician-facing ML-based systems. The main contributions of this systematic review are: (1) an overview of the technical aspects of ML innovation and their consequences for HCI researchers and practitioners; (2) a description of the different roles that ML-based systems can take in clinical settings; (3) a conceptualisation of the main activities of medical ML innovation processes; (4) identification of five sociotechnical interdependencies that emerge from medical ML innovation; and (5) implications for HCI researchers and practitioners on how to mitigate the sociotechnical challenges of medical ML innovation.</abstract><cop>New York, NY</cop><pub>ACM</pub><doi>10.1145/3582430</doi><tpages>39</tpages><orcidid>https://orcid.org/0000-0002-6724-7281</orcidid><orcidid>https://orcid.org/0000-0002-1392-5999</orcidid><orcidid>https://orcid.org/0000-0002-9342-5520</orcidid><orcidid>https://orcid.org/0000-0001-9675-3418</orcidid><orcidid>https://orcid.org/0000-0002-6020-9688</orcidid><orcidid>https://orcid.org/0000-0003-0689-6912</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1073-0516 |
ispartof | ACM transactions on computer-human interaction, 2023-03, Vol.30 (2), p.1-39, Article 33 |
issn | 1073-0516 1557-7325 |
language | eng |
recordid | cdi_crossref_primary_10_1145_3582430 |
source | ACM Digital Library |
subjects | HCI theory, concepts and models Human-centered computing |
title | Clinician-Facing AI in the Wild: Taking Stock of the Sociotechnical Challenges and Opportunities for HCI |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T13%3A53%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-acm_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Clinician-Facing%20AI%20in%20the%20Wild:%20Taking%20Stock%20of%20the%20Sociotechnical%20Challenges%20and%20Opportunities%20for%20HCI&rft.jtitle=ACM%20transactions%20on%20computer-human%20interaction&rft.au=Zaj%C4%85c,%20Hubert%20D.&rft.date=2023-03-17&rft.volume=30&rft.issue=2&rft.spage=1&rft.epage=39&rft.pages=1-39&rft.artnum=33&rft.issn=1073-0516&rft.eissn=1557-7325&rft_id=info:doi/10.1145/3582430&rft_dat=%3Cacm_cross%3E3582430%3C/acm_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |