Clinician-Facing AI in the Wild: Taking Stock of the Sociotechnical Challenges and Opportunities for HCI

Artificial Intelligence (AI) in medical applications holds great promise. However, the use of Machine Learning-based (ML) systems in clinical practice is still minimal. It is uniquely difficult to introduce clinician-facing ML-based systems in practice, which has been recognised in HCI and related f...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACM transactions on computer-human interaction 2023-03, Vol.30 (2), p.1-39, Article 33
Hauptverfasser: Zając, Hubert D., Li, Dana, Dai, Xiang, Carlsen, Jonathan F., Kensing, Finn, Andersen, Tariq O.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 39
container_issue 2
container_start_page 1
container_title ACM transactions on computer-human interaction
container_volume 30
creator Zając, Hubert D.
Li, Dana
Dai, Xiang
Carlsen, Jonathan F.
Kensing, Finn
Andersen, Tariq O.
description Artificial Intelligence (AI) in medical applications holds great promise. However, the use of Machine Learning-based (ML) systems in clinical practice is still minimal. It is uniquely difficult to introduce clinician-facing ML-based systems in practice, which has been recognised in HCI and related fields. Recent publications have begun to address the sociotechnical challenges of designing, developing, and successfully deploying clinician-facing ML-based systems. We conducted a qualitative systematic review and provided answers to the question: “How can HCI researchers and practitioners contribute to the successful realisation of ML in medical practice?” We reviewed 25 eligible papers that investigated the real-world clinical implications of concrete clinician-facing ML-based systems. The main contributions of this systematic review are: (1) an overview of the technical aspects of ML innovation and their consequences for HCI researchers and practitioners; (2) a description of the different roles that ML-based systems can take in clinical settings; (3) a conceptualisation of the main activities of medical ML innovation processes; (4) identification of five sociotechnical interdependencies that emerge from medical ML innovation; and (5) implications for HCI researchers and practitioners on how to mitigate the sociotechnical challenges of medical ML innovation.
doi_str_mv 10.1145/3582430
format Article
fullrecord <record><control><sourceid>acm_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1145_3582430</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3582430</sourcerecordid><originalsourceid>FETCH-LOGICAL-a277t-23e2848662147bbbeb7ca8fbb81923119c226f56ace4ddae6198b333989de8653</originalsourceid><addsrcrecordid>eNo9kL1PwzAUxC0EEqUgdiZvTAF_xB9hqyJKK1Xq0CLG6NlxGtPUjpIw8N-T0sJ0T3e_d8MhdE_JE6WpeOZCs5STCzShQqhEcSYux5sonhBB5TW66ftPQghVMp2gOm988NZDSOZgfdjh2RL7gIfa4Q_flC94C_ujvRmi3eNY_SabaH0cnK3HV2hwXkPTuLBzPYZQ4nXbxm74Cn7wo1PFDi_y5S26qqDp3d1Zp-h9_rrNF8lq_bbMZ6sEmFJDwrhjOtVSMpoqY4wzyoKujNE0Y5zSzDImKyHBurQswUmaacM5z3RWOi0Fn6LHU6_tYt93rirazh-g-y4oKY4DFeeBRvLhRII9_EN_4Q_awF9P</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Clinician-Facing AI in the Wild: Taking Stock of the Sociotechnical Challenges and Opportunities for HCI</title><source>ACM Digital Library</source><creator>Zając, Hubert D. ; Li, Dana ; Dai, Xiang ; Carlsen, Jonathan F. ; Kensing, Finn ; Andersen, Tariq O.</creator><creatorcontrib>Zając, Hubert D. ; Li, Dana ; Dai, Xiang ; Carlsen, Jonathan F. ; Kensing, Finn ; Andersen, Tariq O.</creatorcontrib><description>Artificial Intelligence (AI) in medical applications holds great promise. However, the use of Machine Learning-based (ML) systems in clinical practice is still minimal. It is uniquely difficult to introduce clinician-facing ML-based systems in practice, which has been recognised in HCI and related fields. Recent publications have begun to address the sociotechnical challenges of designing, developing, and successfully deploying clinician-facing ML-based systems. We conducted a qualitative systematic review and provided answers to the question: “How can HCI researchers and practitioners contribute to the successful realisation of ML in medical practice?” We reviewed 25 eligible papers that investigated the real-world clinical implications of concrete clinician-facing ML-based systems. The main contributions of this systematic review are: (1) an overview of the technical aspects of ML innovation and their consequences for HCI researchers and practitioners; (2) a description of the different roles that ML-based systems can take in clinical settings; (3) a conceptualisation of the main activities of medical ML innovation processes; (4) identification of five sociotechnical interdependencies that emerge from medical ML innovation; and (5) implications for HCI researchers and practitioners on how to mitigate the sociotechnical challenges of medical ML innovation.</description><identifier>ISSN: 1073-0516</identifier><identifier>EISSN: 1557-7325</identifier><identifier>DOI: 10.1145/3582430</identifier><language>eng</language><publisher>New York, NY: ACM</publisher><subject>HCI theory, concepts and models ; Human-centered computing</subject><ispartof>ACM transactions on computer-human interaction, 2023-03, Vol.30 (2), p.1-39, Article 33</ispartof><rights>Copyright held by the owner/author(s).</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a277t-23e2848662147bbbeb7ca8fbb81923119c226f56ace4ddae6198b333989de8653</citedby><cites>FETCH-LOGICAL-a277t-23e2848662147bbbeb7ca8fbb81923119c226f56ace4ddae6198b333989de8653</cites><orcidid>0000-0002-6724-7281 ; 0000-0002-1392-5999 ; 0000-0002-9342-5520 ; 0000-0001-9675-3418 ; 0000-0002-6020-9688 ; 0000-0003-0689-6912</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://dl.acm.org/doi/pdf/10.1145/3582430$$EPDF$$P50$$Gacm$$Hfree_for_read</linktopdf><link.rule.ids>314,777,781,2276,27905,27906,40177,75977</link.rule.ids></links><search><creatorcontrib>Zając, Hubert D.</creatorcontrib><creatorcontrib>Li, Dana</creatorcontrib><creatorcontrib>Dai, Xiang</creatorcontrib><creatorcontrib>Carlsen, Jonathan F.</creatorcontrib><creatorcontrib>Kensing, Finn</creatorcontrib><creatorcontrib>Andersen, Tariq O.</creatorcontrib><title>Clinician-Facing AI in the Wild: Taking Stock of the Sociotechnical Challenges and Opportunities for HCI</title><title>ACM transactions on computer-human interaction</title><addtitle>ACM TOCHI</addtitle><description>Artificial Intelligence (AI) in medical applications holds great promise. However, the use of Machine Learning-based (ML) systems in clinical practice is still minimal. It is uniquely difficult to introduce clinician-facing ML-based systems in practice, which has been recognised in HCI and related fields. Recent publications have begun to address the sociotechnical challenges of designing, developing, and successfully deploying clinician-facing ML-based systems. We conducted a qualitative systematic review and provided answers to the question: “How can HCI researchers and practitioners contribute to the successful realisation of ML in medical practice?” We reviewed 25 eligible papers that investigated the real-world clinical implications of concrete clinician-facing ML-based systems. The main contributions of this systematic review are: (1) an overview of the technical aspects of ML innovation and their consequences for HCI researchers and practitioners; (2) a description of the different roles that ML-based systems can take in clinical settings; (3) a conceptualisation of the main activities of medical ML innovation processes; (4) identification of five sociotechnical interdependencies that emerge from medical ML innovation; and (5) implications for HCI researchers and practitioners on how to mitigate the sociotechnical challenges of medical ML innovation.</description><subject>HCI theory, concepts and models</subject><subject>Human-centered computing</subject><issn>1073-0516</issn><issn>1557-7325</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNo9kL1PwzAUxC0EEqUgdiZvTAF_xB9hqyJKK1Xq0CLG6NlxGtPUjpIw8N-T0sJ0T3e_d8MhdE_JE6WpeOZCs5STCzShQqhEcSYux5sonhBB5TW66ftPQghVMp2gOm988NZDSOZgfdjh2RL7gIfa4Q_flC94C_ujvRmi3eNY_SabaH0cnK3HV2hwXkPTuLBzPYZQ4nXbxm74Cn7wo1PFDi_y5S26qqDp3d1Zp-h9_rrNF8lq_bbMZ6sEmFJDwrhjOtVSMpoqY4wzyoKujNE0Y5zSzDImKyHBurQswUmaacM5z3RWOi0Fn6LHU6_tYt93rirazh-g-y4oKY4DFeeBRvLhRII9_EN_4Q_awF9P</recordid><startdate>20230317</startdate><enddate>20230317</enddate><creator>Zając, Hubert D.</creator><creator>Li, Dana</creator><creator>Dai, Xiang</creator><creator>Carlsen, Jonathan F.</creator><creator>Kensing, Finn</creator><creator>Andersen, Tariq O.</creator><general>ACM</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-6724-7281</orcidid><orcidid>https://orcid.org/0000-0002-1392-5999</orcidid><orcidid>https://orcid.org/0000-0002-9342-5520</orcidid><orcidid>https://orcid.org/0000-0001-9675-3418</orcidid><orcidid>https://orcid.org/0000-0002-6020-9688</orcidid><orcidid>https://orcid.org/0000-0003-0689-6912</orcidid></search><sort><creationdate>20230317</creationdate><title>Clinician-Facing AI in the Wild: Taking Stock of the Sociotechnical Challenges and Opportunities for HCI</title><author>Zając, Hubert D. ; Li, Dana ; Dai, Xiang ; Carlsen, Jonathan F. ; Kensing, Finn ; Andersen, Tariq O.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a277t-23e2848662147bbbeb7ca8fbb81923119c226f56ace4ddae6198b333989de8653</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>HCI theory, concepts and models</topic><topic>Human-centered computing</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zając, Hubert D.</creatorcontrib><creatorcontrib>Li, Dana</creatorcontrib><creatorcontrib>Dai, Xiang</creatorcontrib><creatorcontrib>Carlsen, Jonathan F.</creatorcontrib><creatorcontrib>Kensing, Finn</creatorcontrib><creatorcontrib>Andersen, Tariq O.</creatorcontrib><collection>CrossRef</collection><jtitle>ACM transactions on computer-human interaction</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zając, Hubert D.</au><au>Li, Dana</au><au>Dai, Xiang</au><au>Carlsen, Jonathan F.</au><au>Kensing, Finn</au><au>Andersen, Tariq O.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Clinician-Facing AI in the Wild: Taking Stock of the Sociotechnical Challenges and Opportunities for HCI</atitle><jtitle>ACM transactions on computer-human interaction</jtitle><stitle>ACM TOCHI</stitle><date>2023-03-17</date><risdate>2023</risdate><volume>30</volume><issue>2</issue><spage>1</spage><epage>39</epage><pages>1-39</pages><artnum>33</artnum><issn>1073-0516</issn><eissn>1557-7325</eissn><abstract>Artificial Intelligence (AI) in medical applications holds great promise. However, the use of Machine Learning-based (ML) systems in clinical practice is still minimal. It is uniquely difficult to introduce clinician-facing ML-based systems in practice, which has been recognised in HCI and related fields. Recent publications have begun to address the sociotechnical challenges of designing, developing, and successfully deploying clinician-facing ML-based systems. We conducted a qualitative systematic review and provided answers to the question: “How can HCI researchers and practitioners contribute to the successful realisation of ML in medical practice?” We reviewed 25 eligible papers that investigated the real-world clinical implications of concrete clinician-facing ML-based systems. The main contributions of this systematic review are: (1) an overview of the technical aspects of ML innovation and their consequences for HCI researchers and practitioners; (2) a description of the different roles that ML-based systems can take in clinical settings; (3) a conceptualisation of the main activities of medical ML innovation processes; (4) identification of five sociotechnical interdependencies that emerge from medical ML innovation; and (5) implications for HCI researchers and practitioners on how to mitigate the sociotechnical challenges of medical ML innovation.</abstract><cop>New York, NY</cop><pub>ACM</pub><doi>10.1145/3582430</doi><tpages>39</tpages><orcidid>https://orcid.org/0000-0002-6724-7281</orcidid><orcidid>https://orcid.org/0000-0002-1392-5999</orcidid><orcidid>https://orcid.org/0000-0002-9342-5520</orcidid><orcidid>https://orcid.org/0000-0001-9675-3418</orcidid><orcidid>https://orcid.org/0000-0002-6020-9688</orcidid><orcidid>https://orcid.org/0000-0003-0689-6912</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1073-0516
ispartof ACM transactions on computer-human interaction, 2023-03, Vol.30 (2), p.1-39, Article 33
issn 1073-0516
1557-7325
language eng
recordid cdi_crossref_primary_10_1145_3582430
source ACM Digital Library
subjects HCI theory, concepts and models
Human-centered computing
title Clinician-Facing AI in the Wild: Taking Stock of the Sociotechnical Challenges and Opportunities for HCI
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T13%3A53%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-acm_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Clinician-Facing%20AI%20in%20the%20Wild:%20Taking%20Stock%20of%20the%20Sociotechnical%20Challenges%20and%20Opportunities%20for%20HCI&rft.jtitle=ACM%20transactions%20on%20computer-human%20interaction&rft.au=Zaj%C4%85c,%20Hubert%20D.&rft.date=2023-03-17&rft.volume=30&rft.issue=2&rft.spage=1&rft.epage=39&rft.pages=1-39&rft.artnum=33&rft.issn=1073-0516&rft.eissn=1557-7325&rft_id=info:doi/10.1145/3582430&rft_dat=%3Cacm_cross%3E3582430%3C/acm_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true