Hybrid Quantum Annealing for Larger-than-QPU Lattice-structured Problems
Quantum processing units (QPUs) executing annealing algorithms have shown promise in optimization and simulation applications. Hybrid algorithms are a natural bridge to larger applications. We present a simple greedy method for solving larger-than-QPU lattice-structured Ising optimization problems....
Gespeichert in:
Veröffentlicht in: | ACM transactions on quantum computing (Print) 2023-04, Vol.4 (3), p.1-30, Article 17 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Quantum processing units (QPUs) executing annealing algorithms have shown promise in optimization and simulation applications. Hybrid algorithms are a natural bridge to larger applications. We present a simple greedy method for solving larger-than-QPU lattice-structured Ising optimization problems. The method, implemented in the open source D-Wave Hybrid framework, uses a QPU coprocessor operating with generic parameters. Performance is evaluated for standard spin-glass problems on two lattice types with up to 11,616 spin variables, double the size that is directly programmable on any available QPU. The proposed method is shown to converge to low-energy solutions faster than an open source simulated annealing method that is either directly employed or substituted as a coprocessor in the hybrid method. Using newer Advantage QPUs in place of D-Wave 2000Q QPUs is shown to enhance convergence of the hybrid method to low energies and to achieve a lower final energy. |
---|---|
ISSN: | 2643-6809 2643-6817 |
DOI: | 10.1145/3579368 |