The Online Knapsack Problem with Departures

The online knapsack problem is a classic online resource allocation problem in networking and operations research. Its basic version studies how to pack online arriving items of different sizes and values into a capacity-limited knapsack. In this paper, we study a general version that includes item...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the ACM on measurement and analysis of computing systems 2022-12, Vol.6 (3), p.1-32, Article 57
Hauptverfasser: Sun, Bo, Yang, Lin, Hajiesmaili, Mohammad, Wierman, Adam, Lui, John C. S., Towsley, Don, Tsang, Danny H.K.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 32
container_issue 3
container_start_page 1
container_title Proceedings of the ACM on measurement and analysis of computing systems
container_volume 6
creator Sun, Bo
Yang, Lin
Hajiesmaili, Mohammad
Wierman, Adam
Lui, John C. S.
Towsley, Don
Tsang, Danny H.K.
description The online knapsack problem is a classic online resource allocation problem in networking and operations research. Its basic version studies how to pack online arriving items of different sizes and values into a capacity-limited knapsack. In this paper, we study a general version that includes item departures, while also considering multiple knapsacks and multi-dimensional item sizes. We design a threshold-based online algorithm and prove that the algorithm can achieve order-optimal competitive ratios. Beyond worst-case performance guarantees, we also aim to achieve near-optimal average performance under typical instances. Towards this goal, we propose a data-driven online algorithm that learns within a policy-class that guarantees a worst-case performance bound. In trace-driven experiments, we show that our data-driven algorithm outperforms other benchmark algorithms in an application of online knapsack to job scheduling for cloud computing.
doi_str_mv 10.1145/3570618
format Article
fullrecord <record><control><sourceid>acm_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1145_3570618</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3570618</sourcerecordid><originalsourceid>FETCH-LOGICAL-a244t-c02d7cbd63828b2bb8999dc591a3346c79751b2e645a73e51cd01d5374555d813</originalsourceid><addsrcrecordid>eNpNj0tLAzEUhYMoWGpx7yo7FzKam-TmsZT6xEJd1PWQV-nozHRIRsR_r9Iqrs6B83HgI-QU2CWAxCuBmikwB2TCpVYVcGkP__VjMivllTEGBhlaMSEXq02iy75t-kSfejcUF97oc976NnX0oxk39CYNLo_vOZUTcrR2bUmzfU7Jy93tav5QLZb3j_PrReW4lGMVGI86-KiE4cZz7421Nga04ISQKmirETxPSqLTIiGEyCCi0BIRowExJee735C3peS0rofcdC5_1sDqH816r_lNnu1IF7o_6Hf8AkCtShg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>The Online Knapsack Problem with Departures</title><source>ACM Digital Library</source><creator>Sun, Bo ; Yang, Lin ; Hajiesmaili, Mohammad ; Wierman, Adam ; Lui, John C. S. ; Towsley, Don ; Tsang, Danny H.K.</creator><creatorcontrib>Sun, Bo ; Yang, Lin ; Hajiesmaili, Mohammad ; Wierman, Adam ; Lui, John C. S. ; Towsley, Don ; Tsang, Danny H.K.</creatorcontrib><description>The online knapsack problem is a classic online resource allocation problem in networking and operations research. Its basic version studies how to pack online arriving items of different sizes and values into a capacity-limited knapsack. In this paper, we study a general version that includes item departures, while also considering multiple knapsacks and multi-dimensional item sizes. We design a threshold-based online algorithm and prove that the algorithm can achieve order-optimal competitive ratios. Beyond worst-case performance guarantees, we also aim to achieve near-optimal average performance under typical instances. Towards this goal, we propose a data-driven online algorithm that learns within a policy-class that guarantees a worst-case performance bound. In trace-driven experiments, we show that our data-driven algorithm outperforms other benchmark algorithms in an application of online knapsack to job scheduling for cloud computing.</description><identifier>ISSN: 2476-1249</identifier><identifier>EISSN: 2476-1249</identifier><identifier>DOI: 10.1145/3570618</identifier><language>eng</language><publisher>New York, NY, USA: ACM</publisher><subject>Applied computing ; Decision analysis ; Design and analysis of algorithms ; Network algorithms ; Network economics ; Networks ; Online algorithms ; Operations research ; Theory of computation</subject><ispartof>Proceedings of the ACM on measurement and analysis of computing systems, 2022-12, Vol.6 (3), p.1-32, Article 57</ispartof><rights>ACM</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a244t-c02d7cbd63828b2bb8999dc591a3346c79751b2e645a73e51cd01d5374555d813</citedby><cites>FETCH-LOGICAL-a244t-c02d7cbd63828b2bb8999dc591a3346c79751b2e645a73e51cd01d5374555d813</cites><orcidid>0000-0001-9056-0500 ; 0000-0002-7808-7375 ; 0000-0003-3172-7811 ; 0000-0003-0135-7098 ; 0000-0002-5923-0199 ; 0000-0001-7466-0384 ; 0000-0001-9278-2254</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://dl.acm.org/doi/pdf/10.1145/3570618$$EPDF$$P50$$Gacm$$Hfree_for_read</linktopdf><link.rule.ids>314,776,780,2276,27901,27902,40172,76197</link.rule.ids></links><search><creatorcontrib>Sun, Bo</creatorcontrib><creatorcontrib>Yang, Lin</creatorcontrib><creatorcontrib>Hajiesmaili, Mohammad</creatorcontrib><creatorcontrib>Wierman, Adam</creatorcontrib><creatorcontrib>Lui, John C. S.</creatorcontrib><creatorcontrib>Towsley, Don</creatorcontrib><creatorcontrib>Tsang, Danny H.K.</creatorcontrib><title>The Online Knapsack Problem with Departures</title><title>Proceedings of the ACM on measurement and analysis of computing systems</title><addtitle>ACM POMACS</addtitle><description>The online knapsack problem is a classic online resource allocation problem in networking and operations research. Its basic version studies how to pack online arriving items of different sizes and values into a capacity-limited knapsack. In this paper, we study a general version that includes item departures, while also considering multiple knapsacks and multi-dimensional item sizes. We design a threshold-based online algorithm and prove that the algorithm can achieve order-optimal competitive ratios. Beyond worst-case performance guarantees, we also aim to achieve near-optimal average performance under typical instances. Towards this goal, we propose a data-driven online algorithm that learns within a policy-class that guarantees a worst-case performance bound. In trace-driven experiments, we show that our data-driven algorithm outperforms other benchmark algorithms in an application of online knapsack to job scheduling for cloud computing.</description><subject>Applied computing</subject><subject>Decision analysis</subject><subject>Design and analysis of algorithms</subject><subject>Network algorithms</subject><subject>Network economics</subject><subject>Networks</subject><subject>Online algorithms</subject><subject>Operations research</subject><subject>Theory of computation</subject><issn>2476-1249</issn><issn>2476-1249</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNpNj0tLAzEUhYMoWGpx7yo7FzKam-TmsZT6xEJd1PWQV-nozHRIRsR_r9Iqrs6B83HgI-QU2CWAxCuBmikwB2TCpVYVcGkP__VjMivllTEGBhlaMSEXq02iy75t-kSfejcUF97oc976NnX0oxk39CYNLo_vOZUTcrR2bUmzfU7Jy93tav5QLZb3j_PrReW4lGMVGI86-KiE4cZz7421Nga04ISQKmirETxPSqLTIiGEyCCi0BIRowExJee735C3peS0rofcdC5_1sDqH816r_lNnu1IF7o_6Hf8AkCtShg</recordid><startdate>20221208</startdate><enddate>20221208</enddate><creator>Sun, Bo</creator><creator>Yang, Lin</creator><creator>Hajiesmaili, Mohammad</creator><creator>Wierman, Adam</creator><creator>Lui, John C. S.</creator><creator>Towsley, Don</creator><creator>Tsang, Danny H.K.</creator><general>ACM</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0001-9056-0500</orcidid><orcidid>https://orcid.org/0000-0002-7808-7375</orcidid><orcidid>https://orcid.org/0000-0003-3172-7811</orcidid><orcidid>https://orcid.org/0000-0003-0135-7098</orcidid><orcidid>https://orcid.org/0000-0002-5923-0199</orcidid><orcidid>https://orcid.org/0000-0001-7466-0384</orcidid><orcidid>https://orcid.org/0000-0001-9278-2254</orcidid></search><sort><creationdate>20221208</creationdate><title>The Online Knapsack Problem with Departures</title><author>Sun, Bo ; Yang, Lin ; Hajiesmaili, Mohammad ; Wierman, Adam ; Lui, John C. S. ; Towsley, Don ; Tsang, Danny H.K.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a244t-c02d7cbd63828b2bb8999dc591a3346c79751b2e645a73e51cd01d5374555d813</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Applied computing</topic><topic>Decision analysis</topic><topic>Design and analysis of algorithms</topic><topic>Network algorithms</topic><topic>Network economics</topic><topic>Networks</topic><topic>Online algorithms</topic><topic>Operations research</topic><topic>Theory of computation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sun, Bo</creatorcontrib><creatorcontrib>Yang, Lin</creatorcontrib><creatorcontrib>Hajiesmaili, Mohammad</creatorcontrib><creatorcontrib>Wierman, Adam</creatorcontrib><creatorcontrib>Lui, John C. S.</creatorcontrib><creatorcontrib>Towsley, Don</creatorcontrib><creatorcontrib>Tsang, Danny H.K.</creatorcontrib><collection>CrossRef</collection><jtitle>Proceedings of the ACM on measurement and analysis of computing systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sun, Bo</au><au>Yang, Lin</au><au>Hajiesmaili, Mohammad</au><au>Wierman, Adam</au><au>Lui, John C. S.</au><au>Towsley, Don</au><au>Tsang, Danny H.K.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The Online Knapsack Problem with Departures</atitle><jtitle>Proceedings of the ACM on measurement and analysis of computing systems</jtitle><stitle>ACM POMACS</stitle><date>2022-12-08</date><risdate>2022</risdate><volume>6</volume><issue>3</issue><spage>1</spage><epage>32</epage><pages>1-32</pages><artnum>57</artnum><issn>2476-1249</issn><eissn>2476-1249</eissn><abstract>The online knapsack problem is a classic online resource allocation problem in networking and operations research. Its basic version studies how to pack online arriving items of different sizes and values into a capacity-limited knapsack. In this paper, we study a general version that includes item departures, while also considering multiple knapsacks and multi-dimensional item sizes. We design a threshold-based online algorithm and prove that the algorithm can achieve order-optimal competitive ratios. Beyond worst-case performance guarantees, we also aim to achieve near-optimal average performance under typical instances. Towards this goal, we propose a data-driven online algorithm that learns within a policy-class that guarantees a worst-case performance bound. In trace-driven experiments, we show that our data-driven algorithm outperforms other benchmark algorithms in an application of online knapsack to job scheduling for cloud computing.</abstract><cop>New York, NY, USA</cop><pub>ACM</pub><doi>10.1145/3570618</doi><tpages>32</tpages><orcidid>https://orcid.org/0000-0001-9056-0500</orcidid><orcidid>https://orcid.org/0000-0002-7808-7375</orcidid><orcidid>https://orcid.org/0000-0003-3172-7811</orcidid><orcidid>https://orcid.org/0000-0003-0135-7098</orcidid><orcidid>https://orcid.org/0000-0002-5923-0199</orcidid><orcidid>https://orcid.org/0000-0001-7466-0384</orcidid><orcidid>https://orcid.org/0000-0001-9278-2254</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2476-1249
ispartof Proceedings of the ACM on measurement and analysis of computing systems, 2022-12, Vol.6 (3), p.1-32, Article 57
issn 2476-1249
2476-1249
language eng
recordid cdi_crossref_primary_10_1145_3570618
source ACM Digital Library
subjects Applied computing
Decision analysis
Design and analysis of algorithms
Network algorithms
Network economics
Networks
Online algorithms
Operations research
Theory of computation
title The Online Knapsack Problem with Departures
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-15T01%3A56%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-acm_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20Online%20Knapsack%20Problem%20with%20Departures&rft.jtitle=Proceedings%20of%20the%20ACM%20on%20measurement%20and%20analysis%20of%20computing%20systems&rft.au=Sun,%20Bo&rft.date=2022-12-08&rft.volume=6&rft.issue=3&rft.spage=1&rft.epage=32&rft.pages=1-32&rft.artnum=57&rft.issn=2476-1249&rft.eissn=2476-1249&rft_id=info:doi/10.1145/3570618&rft_dat=%3Cacm_cross%3E3570618%3C/acm_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true