fSEAD: A Composable FPGA-based Streaming Ensemble Anomaly Detection Library

Machine learning ensembles combine multiple base models to produce a more accurate output. They can be applied to a range of machine learning problems, including anomaly detection. In this article, we investigate how to maximize the composability and scalability of an FPGA-based streaming ensemble a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACM transactions on reconfigurable technology and systems 2023-09, Vol.16 (3), p.1-27
Hauptverfasser: Lou, Binglei, Boland, David, Leong, Philip
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 27
container_issue 3
container_start_page 1
container_title ACM transactions on reconfigurable technology and systems
container_volume 16
creator Lou, Binglei
Boland, David
Leong, Philip
description Machine learning ensembles combine multiple base models to produce a more accurate output. They can be applied to a range of machine learning problems, including anomaly detection. In this article, we investigate how to maximize the composability and scalability of an FPGA-based streaming ensemble anomaly detector (fSEAD). To achieve this, we propose a flexible computing architecture consisting of multiple partially reconfigurable regions, pblocks, which each implement anomaly detectors. Our proof-of-concept design supports three state-of-the-art anomaly detection algorithms: Loda, RS-Hash, and xStream. Each algorithm is scalable, meaning multiple instances can be placed within a pblock to improve performance. Moreover, fSEAD is implemented using High-level synthesis (HLS), meaning further custom anomaly detectors can be supported. Pblocks are interconnected via an AXI-switch, enabling them to be composed in an arbitrary fashion before combining and merging results at runtime to create an ensemble that maximizes the use of FPGA resources and accuracy. Through utilizing reconfigurable Dynamic Function eXchange (DFX), the detector can be modified at runtime to adapt to changing environmental conditions. We compare fSEAD to an equivalent central processing unit (CPU) implementation using four standard datasets, with speedups ranging from 3× to 8×.
doi_str_mv 10.1145/3568992
format Article
fullrecord <record><control><sourceid>crossref</sourceid><recordid>TN_cdi_crossref_primary_10_1145_3568992</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1145_3568992</sourcerecordid><originalsourceid>FETCH-LOGICAL-c220t-f72342b43229568be51decbd5171c775233c41b59e8bb85a869ff0dd25db155f3</originalsourceid><addsrcrecordid>eNo9kEtLw0AYRQdRsFbxL8zOVXTeybgLaVrFQAvVdZjHNxLJo8xk039vi8XVvXDhcjgIPVLyTKmQL1yqQmt2hRZUc5Xlgorr_07ULbpL6YcQxVUhFugj7Oty9YpLXE3DYUrG9oDXu02ZWZPA4_0cwQzd-I3rMcFwXstxGkx_xCuYwc3dNOKms9HE4z26CaZP8HDJJfpa15_VW9ZsN-9V2WSOMTJnIWdcMCs4Y_rEakFSD856SXPq8lwyzp2gVmoorC2kKZQOgXjPpLdUysCX6Onv18UppQihPcRuOAG0lLRnB-3FAf8FhVRMXA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>fSEAD: A Composable FPGA-based Streaming Ensemble Anomaly Detection Library</title><source>ACM Digital Library Complete</source><creator>Lou, Binglei ; Boland, David ; Leong, Philip</creator><creatorcontrib>Lou, Binglei ; Boland, David ; Leong, Philip</creatorcontrib><description>Machine learning ensembles combine multiple base models to produce a more accurate output. They can be applied to a range of machine learning problems, including anomaly detection. In this article, we investigate how to maximize the composability and scalability of an FPGA-based streaming ensemble anomaly detector (fSEAD). To achieve this, we propose a flexible computing architecture consisting of multiple partially reconfigurable regions, pblocks, which each implement anomaly detectors. Our proof-of-concept design supports three state-of-the-art anomaly detection algorithms: Loda, RS-Hash, and xStream. Each algorithm is scalable, meaning multiple instances can be placed within a pblock to improve performance. Moreover, fSEAD is implemented using High-level synthesis (HLS), meaning further custom anomaly detectors can be supported. Pblocks are interconnected via an AXI-switch, enabling them to be composed in an arbitrary fashion before combining and merging results at runtime to create an ensemble that maximizes the use of FPGA resources and accuracy. Through utilizing reconfigurable Dynamic Function eXchange (DFX), the detector can be modified at runtime to adapt to changing environmental conditions. We compare fSEAD to an equivalent central processing unit (CPU) implementation using four standard datasets, with speedups ranging from 3× to 8×.</description><identifier>ISSN: 1936-7406</identifier><identifier>EISSN: 1936-7414</identifier><identifier>DOI: 10.1145/3568992</identifier><language>eng</language><ispartof>ACM transactions on reconfigurable technology and systems, 2023-09, Vol.16 (3), p.1-27</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c220t-f72342b43229568be51decbd5171c775233c41b59e8bb85a869ff0dd25db155f3</cites><orcidid>0000-0002-3923-3499 ; 0000-0003-4662-1892 ; 0000-0001-5370-4464</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Lou, Binglei</creatorcontrib><creatorcontrib>Boland, David</creatorcontrib><creatorcontrib>Leong, Philip</creatorcontrib><title>fSEAD: A Composable FPGA-based Streaming Ensemble Anomaly Detection Library</title><title>ACM transactions on reconfigurable technology and systems</title><description>Machine learning ensembles combine multiple base models to produce a more accurate output. They can be applied to a range of machine learning problems, including anomaly detection. In this article, we investigate how to maximize the composability and scalability of an FPGA-based streaming ensemble anomaly detector (fSEAD). To achieve this, we propose a flexible computing architecture consisting of multiple partially reconfigurable regions, pblocks, which each implement anomaly detectors. Our proof-of-concept design supports three state-of-the-art anomaly detection algorithms: Loda, RS-Hash, and xStream. Each algorithm is scalable, meaning multiple instances can be placed within a pblock to improve performance. Moreover, fSEAD is implemented using High-level synthesis (HLS), meaning further custom anomaly detectors can be supported. Pblocks are interconnected via an AXI-switch, enabling them to be composed in an arbitrary fashion before combining and merging results at runtime to create an ensemble that maximizes the use of FPGA resources and accuracy. Through utilizing reconfigurable Dynamic Function eXchange (DFX), the detector can be modified at runtime to adapt to changing environmental conditions. We compare fSEAD to an equivalent central processing unit (CPU) implementation using four standard datasets, with speedups ranging from 3× to 8×.</description><issn>1936-7406</issn><issn>1936-7414</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNo9kEtLw0AYRQdRsFbxL8zOVXTeybgLaVrFQAvVdZjHNxLJo8xk039vi8XVvXDhcjgIPVLyTKmQL1yqQmt2hRZUc5Xlgorr_07ULbpL6YcQxVUhFugj7Oty9YpLXE3DYUrG9oDXu02ZWZPA4_0cwQzd-I3rMcFwXstxGkx_xCuYwc3dNOKms9HE4z26CaZP8HDJJfpa15_VW9ZsN-9V2WSOMTJnIWdcMCs4Y_rEakFSD856SXPq8lwyzp2gVmoorC2kKZQOgXjPpLdUysCX6Onv18UppQihPcRuOAG0lLRnB-3FAf8FhVRMXA</recordid><startdate>20230930</startdate><enddate>20230930</enddate><creator>Lou, Binglei</creator><creator>Boland, David</creator><creator>Leong, Philip</creator><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-3923-3499</orcidid><orcidid>https://orcid.org/0000-0003-4662-1892</orcidid><orcidid>https://orcid.org/0000-0001-5370-4464</orcidid></search><sort><creationdate>20230930</creationdate><title>fSEAD: A Composable FPGA-based Streaming Ensemble Anomaly Detection Library</title><author>Lou, Binglei ; Boland, David ; Leong, Philip</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c220t-f72342b43229568be51decbd5171c775233c41b59e8bb85a869ff0dd25db155f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lou, Binglei</creatorcontrib><creatorcontrib>Boland, David</creatorcontrib><creatorcontrib>Leong, Philip</creatorcontrib><collection>CrossRef</collection><jtitle>ACM transactions on reconfigurable technology and systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lou, Binglei</au><au>Boland, David</au><au>Leong, Philip</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>fSEAD: A Composable FPGA-based Streaming Ensemble Anomaly Detection Library</atitle><jtitle>ACM transactions on reconfigurable technology and systems</jtitle><date>2023-09-30</date><risdate>2023</risdate><volume>16</volume><issue>3</issue><spage>1</spage><epage>27</epage><pages>1-27</pages><issn>1936-7406</issn><eissn>1936-7414</eissn><abstract>Machine learning ensembles combine multiple base models to produce a more accurate output. They can be applied to a range of machine learning problems, including anomaly detection. In this article, we investigate how to maximize the composability and scalability of an FPGA-based streaming ensemble anomaly detector (fSEAD). To achieve this, we propose a flexible computing architecture consisting of multiple partially reconfigurable regions, pblocks, which each implement anomaly detectors. Our proof-of-concept design supports three state-of-the-art anomaly detection algorithms: Loda, RS-Hash, and xStream. Each algorithm is scalable, meaning multiple instances can be placed within a pblock to improve performance. Moreover, fSEAD is implemented using High-level synthesis (HLS), meaning further custom anomaly detectors can be supported. Pblocks are interconnected via an AXI-switch, enabling them to be composed in an arbitrary fashion before combining and merging results at runtime to create an ensemble that maximizes the use of FPGA resources and accuracy. Through utilizing reconfigurable Dynamic Function eXchange (DFX), the detector can be modified at runtime to adapt to changing environmental conditions. We compare fSEAD to an equivalent central processing unit (CPU) implementation using four standard datasets, with speedups ranging from 3× to 8×.</abstract><doi>10.1145/3568992</doi><tpages>27</tpages><orcidid>https://orcid.org/0000-0002-3923-3499</orcidid><orcidid>https://orcid.org/0000-0003-4662-1892</orcidid><orcidid>https://orcid.org/0000-0001-5370-4464</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1936-7406
ispartof ACM transactions on reconfigurable technology and systems, 2023-09, Vol.16 (3), p.1-27
issn 1936-7406
1936-7414
language eng
recordid cdi_crossref_primary_10_1145_3568992
source ACM Digital Library Complete
title fSEAD: A Composable FPGA-based Streaming Ensemble Anomaly Detection Library
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T16%3A34%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=fSEAD:%20A%20Composable%20FPGA-based%20Streaming%20Ensemble%20Anomaly%20Detection%20Library&rft.jtitle=ACM%20transactions%20on%20reconfigurable%20technology%20and%20systems&rft.au=Lou,%20Binglei&rft.date=2023-09-30&rft.volume=16&rft.issue=3&rft.spage=1&rft.epage=27&rft.pages=1-27&rft.issn=1936-7406&rft.eissn=1936-7414&rft_id=info:doi/10.1145/3568992&rft_dat=%3Ccrossref%3E10_1145_3568992%3C/crossref%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true