RESUS: Warm-up Cold Users via Meta-learning Residual User Preferences in CTR Prediction

Click-through Rate (CTR) prediction on cold users is a challenging task in recommender systems. Recent researches have resorted to meta-learning to tackle the cold-user challenge, which either perform few-shot user representation learning or adopt optimization-based meta-learning. However, existing...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACM transactions on information systems 2023-02, Vol.41 (3), p.1-26, Article 69
Hauptverfasser: Shen, Yanyan, Zhao, Lifan, Cheng, Weiyu, Zhang, Zibin, Zhou, Wenwen, Kangyi, Lin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 26
container_issue 3
container_start_page 1
container_title ACM transactions on information systems
container_volume 41
creator Shen, Yanyan
Zhao, Lifan
Cheng, Weiyu
Zhang, Zibin
Zhou, Wenwen
Kangyi, Lin
description Click-through Rate (CTR) prediction on cold users is a challenging task in recommender systems. Recent researches have resorted to meta-learning to tackle the cold-user challenge, which either perform few-shot user representation learning or adopt optimization-based meta-learning. However, existing methods suffer from information loss or inefficient optimization process, and they fail to explicitly model global user preference knowledge, which is crucial to complement the sparse and insufficient preference information of cold users. In this article, we propose a novel and efficient approach named RESUS, which decouples the learning of global preference knowledge contributed by collective users from the learning of residual preferences for individual users. Specifically, we employ a shared predictor to infer basis user preferences, which acquires global preference knowledge from the interactions of different users. Meanwhile, we develop two efficient algorithms based on the nearest neighbor and ridge regression predictors, which infer residual user preferences via learning quickly from a few user-specific interactions. Extensive experiments on three public datasets demonstrate that our RESUS approach is efficient and effective in improving CTR prediction accuracy on cold users, compared with various state-of-the-art methods.
doi_str_mv 10.1145/3564283
format Article
fullrecord <record><control><sourceid>acm_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1145_3564283</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3564283</sourcerecordid><originalsourceid>FETCH-LOGICAL-a244t-2d57bd5f8f4a0a4f4880057e3a022261f954adf90879d0972e4016bc0a88f0853</originalsourceid><addsrcrecordid>eNo9kM1LAzEQxYMoWKt495Sbp-gkm-zOepPFL6go_aDHZbpJJLLdlqQV_O_d2urpzXvzYxgeY5cSbqTU5jYzuVaYHbGBNAaFwhyP-xl0LlAinrKzlD4Bep_DgM3HD5PZ5I7PKS7Fds2rVWv5LLmY-Fcg_uo2JFpHsQvdBx-7FOyW2l-Av0fnXXRd4xIPHa-m411kQ7MJq-6cnXhqk7s46JDNHh-m1bMYvT29VPcjQUrrjVDWFAtrPHpNQNprRABTuIxAKZVLXxpN1peARWmhLJTTIPNFA4ToAU02ZNf7u01cpdR_VK9jWFL8riXUuz7qQx89ebUnqVn-Q3_LH2NgWHM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>RESUS: Warm-up Cold Users via Meta-learning Residual User Preferences in CTR Prediction</title><source>ACM Digital Library Complete</source><creator>Shen, Yanyan ; Zhao, Lifan ; Cheng, Weiyu ; Zhang, Zibin ; Zhou, Wenwen ; Kangyi, Lin</creator><creatorcontrib>Shen, Yanyan ; Zhao, Lifan ; Cheng, Weiyu ; Zhang, Zibin ; Zhou, Wenwen ; Kangyi, Lin</creatorcontrib><description>Click-through Rate (CTR) prediction on cold users is a challenging task in recommender systems. Recent researches have resorted to meta-learning to tackle the cold-user challenge, which either perform few-shot user representation learning or adopt optimization-based meta-learning. However, existing methods suffer from information loss or inefficient optimization process, and they fail to explicitly model global user preference knowledge, which is crucial to complement the sparse and insufficient preference information of cold users. In this article, we propose a novel and efficient approach named RESUS, which decouples the learning of global preference knowledge contributed by collective users from the learning of residual preferences for individual users. Specifically, we employ a shared predictor to infer basis user preferences, which acquires global preference knowledge from the interactions of different users. Meanwhile, we develop two efficient algorithms based on the nearest neighbor and ridge regression predictors, which infer residual user preferences via learning quickly from a few user-specific interactions. Extensive experiments on three public datasets demonstrate that our RESUS approach is efficient and effective in improving CTR prediction accuracy on cold users, compared with various state-of-the-art methods.</description><identifier>ISSN: 1046-8188</identifier><identifier>EISSN: 1558-2868</identifier><identifier>DOI: 10.1145/3564283</identifier><language>eng</language><publisher>New York, NY: ACM</publisher><subject>Information systems ; Recommender systems</subject><ispartof>ACM transactions on information systems, 2023-02, Vol.41 (3), p.1-26, Article 69</ispartof><rights>Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a244t-2d57bd5f8f4a0a4f4880057e3a022261f954adf90879d0972e4016bc0a88f0853</citedby><cites>FETCH-LOGICAL-a244t-2d57bd5f8f4a0a4f4880057e3a022261f954adf90879d0972e4016bc0a88f0853</cites><orcidid>0000-0001-6259-392X ; 0000-0003-3526-8579 ; 0000-0003-2381-6830 ; 0000-0003-3837-7754 ; 0000-0001-8364-3674 ; 0000-0003-2734-6899</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://dl.acm.org/doi/pdf/10.1145/3564283$$EPDF$$P50$$Gacm$$H</linktopdf><link.rule.ids>314,776,780,2276,27901,27902,40172,75970</link.rule.ids></links><search><creatorcontrib>Shen, Yanyan</creatorcontrib><creatorcontrib>Zhao, Lifan</creatorcontrib><creatorcontrib>Cheng, Weiyu</creatorcontrib><creatorcontrib>Zhang, Zibin</creatorcontrib><creatorcontrib>Zhou, Wenwen</creatorcontrib><creatorcontrib>Kangyi, Lin</creatorcontrib><title>RESUS: Warm-up Cold Users via Meta-learning Residual User Preferences in CTR Prediction</title><title>ACM transactions on information systems</title><addtitle>ACM TOIS</addtitle><description>Click-through Rate (CTR) prediction on cold users is a challenging task in recommender systems. Recent researches have resorted to meta-learning to tackle the cold-user challenge, which either perform few-shot user representation learning or adopt optimization-based meta-learning. However, existing methods suffer from information loss or inefficient optimization process, and they fail to explicitly model global user preference knowledge, which is crucial to complement the sparse and insufficient preference information of cold users. In this article, we propose a novel and efficient approach named RESUS, which decouples the learning of global preference knowledge contributed by collective users from the learning of residual preferences for individual users. Specifically, we employ a shared predictor to infer basis user preferences, which acquires global preference knowledge from the interactions of different users. Meanwhile, we develop two efficient algorithms based on the nearest neighbor and ridge regression predictors, which infer residual user preferences via learning quickly from a few user-specific interactions. Extensive experiments on three public datasets demonstrate that our RESUS approach is efficient and effective in improving CTR prediction accuracy on cold users, compared with various state-of-the-art methods.</description><subject>Information systems</subject><subject>Recommender systems</subject><issn>1046-8188</issn><issn>1558-2868</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNo9kM1LAzEQxYMoWKt495Sbp-gkm-zOepPFL6go_aDHZbpJJLLdlqQV_O_d2urpzXvzYxgeY5cSbqTU5jYzuVaYHbGBNAaFwhyP-xl0LlAinrKzlD4Bep_DgM3HD5PZ5I7PKS7Fds2rVWv5LLmY-Fcg_uo2JFpHsQvdBx-7FOyW2l-Av0fnXXRd4xIPHa-m411kQ7MJq-6cnXhqk7s46JDNHh-m1bMYvT29VPcjQUrrjVDWFAtrPHpNQNprRABTuIxAKZVLXxpN1peARWmhLJTTIPNFA4ToAU02ZNf7u01cpdR_VK9jWFL8riXUuz7qQx89ebUnqVn-Q3_LH2NgWHM</recordid><startdate>20230207</startdate><enddate>20230207</enddate><creator>Shen, Yanyan</creator><creator>Zhao, Lifan</creator><creator>Cheng, Weiyu</creator><creator>Zhang, Zibin</creator><creator>Zhou, Wenwen</creator><creator>Kangyi, Lin</creator><general>ACM</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0001-6259-392X</orcidid><orcidid>https://orcid.org/0000-0003-3526-8579</orcidid><orcidid>https://orcid.org/0000-0003-2381-6830</orcidid><orcidid>https://orcid.org/0000-0003-3837-7754</orcidid><orcidid>https://orcid.org/0000-0001-8364-3674</orcidid><orcidid>https://orcid.org/0000-0003-2734-6899</orcidid></search><sort><creationdate>20230207</creationdate><title>RESUS: Warm-up Cold Users via Meta-learning Residual User Preferences in CTR Prediction</title><author>Shen, Yanyan ; Zhao, Lifan ; Cheng, Weiyu ; Zhang, Zibin ; Zhou, Wenwen ; Kangyi, Lin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a244t-2d57bd5f8f4a0a4f4880057e3a022261f954adf90879d0972e4016bc0a88f0853</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Information systems</topic><topic>Recommender systems</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shen, Yanyan</creatorcontrib><creatorcontrib>Zhao, Lifan</creatorcontrib><creatorcontrib>Cheng, Weiyu</creatorcontrib><creatorcontrib>Zhang, Zibin</creatorcontrib><creatorcontrib>Zhou, Wenwen</creatorcontrib><creatorcontrib>Kangyi, Lin</creatorcontrib><collection>CrossRef</collection><jtitle>ACM transactions on information systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Shen, Yanyan</au><au>Zhao, Lifan</au><au>Cheng, Weiyu</au><au>Zhang, Zibin</au><au>Zhou, Wenwen</au><au>Kangyi, Lin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>RESUS: Warm-up Cold Users via Meta-learning Residual User Preferences in CTR Prediction</atitle><jtitle>ACM transactions on information systems</jtitle><stitle>ACM TOIS</stitle><date>2023-02-07</date><risdate>2023</risdate><volume>41</volume><issue>3</issue><spage>1</spage><epage>26</epage><pages>1-26</pages><artnum>69</artnum><issn>1046-8188</issn><eissn>1558-2868</eissn><abstract>Click-through Rate (CTR) prediction on cold users is a challenging task in recommender systems. Recent researches have resorted to meta-learning to tackle the cold-user challenge, which either perform few-shot user representation learning or adopt optimization-based meta-learning. However, existing methods suffer from information loss or inefficient optimization process, and they fail to explicitly model global user preference knowledge, which is crucial to complement the sparse and insufficient preference information of cold users. In this article, we propose a novel and efficient approach named RESUS, which decouples the learning of global preference knowledge contributed by collective users from the learning of residual preferences for individual users. Specifically, we employ a shared predictor to infer basis user preferences, which acquires global preference knowledge from the interactions of different users. Meanwhile, we develop two efficient algorithms based on the nearest neighbor and ridge regression predictors, which infer residual user preferences via learning quickly from a few user-specific interactions. Extensive experiments on three public datasets demonstrate that our RESUS approach is efficient and effective in improving CTR prediction accuracy on cold users, compared with various state-of-the-art methods.</abstract><cop>New York, NY</cop><pub>ACM</pub><doi>10.1145/3564283</doi><tpages>26</tpages><orcidid>https://orcid.org/0000-0001-6259-392X</orcidid><orcidid>https://orcid.org/0000-0003-3526-8579</orcidid><orcidid>https://orcid.org/0000-0003-2381-6830</orcidid><orcidid>https://orcid.org/0000-0003-3837-7754</orcidid><orcidid>https://orcid.org/0000-0001-8364-3674</orcidid><orcidid>https://orcid.org/0000-0003-2734-6899</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1046-8188
ispartof ACM transactions on information systems, 2023-02, Vol.41 (3), p.1-26, Article 69
issn 1046-8188
1558-2868
language eng
recordid cdi_crossref_primary_10_1145_3564283
source ACM Digital Library Complete
subjects Information systems
Recommender systems
title RESUS: Warm-up Cold Users via Meta-learning Residual User Preferences in CTR Prediction
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T10%3A20%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-acm_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=RESUS:%20Warm-up%20Cold%20Users%20via%20Meta-learning%20Residual%20User%20Preferences%20in%20CTR%20Prediction&rft.jtitle=ACM%20transactions%20on%20information%20systems&rft.au=Shen,%20Yanyan&rft.date=2023-02-07&rft.volume=41&rft.issue=3&rft.spage=1&rft.epage=26&rft.pages=1-26&rft.artnum=69&rft.issn=1046-8188&rft.eissn=1558-2868&rft_id=info:doi/10.1145/3564283&rft_dat=%3Cacm_cross%3E3564283%3C/acm_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true