RESUS: Warm-up Cold Users via Meta-learning Residual User Preferences in CTR Prediction
Click-through Rate (CTR) prediction on cold users is a challenging task in recommender systems. Recent researches have resorted to meta-learning to tackle the cold-user challenge, which either perform few-shot user representation learning or adopt optimization-based meta-learning. However, existing...
Gespeichert in:
Veröffentlicht in: | ACM transactions on information systems 2023-02, Vol.41 (3), p.1-26, Article 69 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 26 |
---|---|
container_issue | 3 |
container_start_page | 1 |
container_title | ACM transactions on information systems |
container_volume | 41 |
creator | Shen, Yanyan Zhao, Lifan Cheng, Weiyu Zhang, Zibin Zhou, Wenwen Kangyi, Lin |
description | Click-through Rate (CTR) prediction on cold users is a challenging task in recommender systems. Recent researches have resorted to meta-learning to tackle the cold-user challenge, which either perform few-shot user representation learning or adopt optimization-based meta-learning. However, existing methods suffer from information loss or inefficient optimization process, and they fail to explicitly model global user preference knowledge, which is crucial to complement the sparse and insufficient preference information of cold users. In this article, we propose a novel and efficient approach named RESUS, which decouples the learning of global preference knowledge contributed by collective users from the learning of residual preferences for individual users. Specifically, we employ a shared predictor to infer basis user preferences, which acquires global preference knowledge from the interactions of different users. Meanwhile, we develop two efficient algorithms based on the nearest neighbor and ridge regression predictors, which infer residual user preferences via learning quickly from a few user-specific interactions. Extensive experiments on three public datasets demonstrate that our RESUS approach is efficient and effective in improving CTR prediction accuracy on cold users, compared with various state-of-the-art methods. |
doi_str_mv | 10.1145/3564283 |
format | Article |
fullrecord | <record><control><sourceid>acm_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1145_3564283</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3564283</sourcerecordid><originalsourceid>FETCH-LOGICAL-a244t-2d57bd5f8f4a0a4f4880057e3a022261f954adf90879d0972e4016bc0a88f0853</originalsourceid><addsrcrecordid>eNo9kM1LAzEQxYMoWKt495Sbp-gkm-zOepPFL6go_aDHZbpJJLLdlqQV_O_d2urpzXvzYxgeY5cSbqTU5jYzuVaYHbGBNAaFwhyP-xl0LlAinrKzlD4Bep_DgM3HD5PZ5I7PKS7Fds2rVWv5LLmY-Fcg_uo2JFpHsQvdBx-7FOyW2l-Av0fnXXRd4xIPHa-m411kQ7MJq-6cnXhqk7s46JDNHh-m1bMYvT29VPcjQUrrjVDWFAtrPHpNQNprRABTuIxAKZVLXxpN1peARWmhLJTTIPNFA4ToAU02ZNf7u01cpdR_VK9jWFL8riXUuz7qQx89ebUnqVn-Q3_LH2NgWHM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>RESUS: Warm-up Cold Users via Meta-learning Residual User Preferences in CTR Prediction</title><source>ACM Digital Library Complete</source><creator>Shen, Yanyan ; Zhao, Lifan ; Cheng, Weiyu ; Zhang, Zibin ; Zhou, Wenwen ; Kangyi, Lin</creator><creatorcontrib>Shen, Yanyan ; Zhao, Lifan ; Cheng, Weiyu ; Zhang, Zibin ; Zhou, Wenwen ; Kangyi, Lin</creatorcontrib><description>Click-through Rate (CTR) prediction on cold users is a challenging task in recommender systems. Recent researches have resorted to meta-learning to tackle the cold-user challenge, which either perform few-shot user representation learning or adopt optimization-based meta-learning. However, existing methods suffer from information loss or inefficient optimization process, and they fail to explicitly model global user preference knowledge, which is crucial to complement the sparse and insufficient preference information of cold users. In this article, we propose a novel and efficient approach named RESUS, which decouples the learning of global preference knowledge contributed by collective users from the learning of residual preferences for individual users. Specifically, we employ a shared predictor to infer basis user preferences, which acquires global preference knowledge from the interactions of different users. Meanwhile, we develop two efficient algorithms based on the nearest neighbor and ridge regression predictors, which infer residual user preferences via learning quickly from a few user-specific interactions. Extensive experiments on three public datasets demonstrate that our RESUS approach is efficient and effective in improving CTR prediction accuracy on cold users, compared with various state-of-the-art methods.</description><identifier>ISSN: 1046-8188</identifier><identifier>EISSN: 1558-2868</identifier><identifier>DOI: 10.1145/3564283</identifier><language>eng</language><publisher>New York, NY: ACM</publisher><subject>Information systems ; Recommender systems</subject><ispartof>ACM transactions on information systems, 2023-02, Vol.41 (3), p.1-26, Article 69</ispartof><rights>Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a244t-2d57bd5f8f4a0a4f4880057e3a022261f954adf90879d0972e4016bc0a88f0853</citedby><cites>FETCH-LOGICAL-a244t-2d57bd5f8f4a0a4f4880057e3a022261f954adf90879d0972e4016bc0a88f0853</cites><orcidid>0000-0001-6259-392X ; 0000-0003-3526-8579 ; 0000-0003-2381-6830 ; 0000-0003-3837-7754 ; 0000-0001-8364-3674 ; 0000-0003-2734-6899</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://dl.acm.org/doi/pdf/10.1145/3564283$$EPDF$$P50$$Gacm$$H</linktopdf><link.rule.ids>314,776,780,2276,27901,27902,40172,75970</link.rule.ids></links><search><creatorcontrib>Shen, Yanyan</creatorcontrib><creatorcontrib>Zhao, Lifan</creatorcontrib><creatorcontrib>Cheng, Weiyu</creatorcontrib><creatorcontrib>Zhang, Zibin</creatorcontrib><creatorcontrib>Zhou, Wenwen</creatorcontrib><creatorcontrib>Kangyi, Lin</creatorcontrib><title>RESUS: Warm-up Cold Users via Meta-learning Residual User Preferences in CTR Prediction</title><title>ACM transactions on information systems</title><addtitle>ACM TOIS</addtitle><description>Click-through Rate (CTR) prediction on cold users is a challenging task in recommender systems. Recent researches have resorted to meta-learning to tackle the cold-user challenge, which either perform few-shot user representation learning or adopt optimization-based meta-learning. However, existing methods suffer from information loss or inefficient optimization process, and they fail to explicitly model global user preference knowledge, which is crucial to complement the sparse and insufficient preference information of cold users. In this article, we propose a novel and efficient approach named RESUS, which decouples the learning of global preference knowledge contributed by collective users from the learning of residual preferences for individual users. Specifically, we employ a shared predictor to infer basis user preferences, which acquires global preference knowledge from the interactions of different users. Meanwhile, we develop two efficient algorithms based on the nearest neighbor and ridge regression predictors, which infer residual user preferences via learning quickly from a few user-specific interactions. Extensive experiments on three public datasets demonstrate that our RESUS approach is efficient and effective in improving CTR prediction accuracy on cold users, compared with various state-of-the-art methods.</description><subject>Information systems</subject><subject>Recommender systems</subject><issn>1046-8188</issn><issn>1558-2868</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNo9kM1LAzEQxYMoWKt495Sbp-gkm-zOepPFL6go_aDHZbpJJLLdlqQV_O_d2urpzXvzYxgeY5cSbqTU5jYzuVaYHbGBNAaFwhyP-xl0LlAinrKzlD4Bep_DgM3HD5PZ5I7PKS7Fds2rVWv5LLmY-Fcg_uo2JFpHsQvdBx-7FOyW2l-Av0fnXXRd4xIPHa-m411kQ7MJq-6cnXhqk7s46JDNHh-m1bMYvT29VPcjQUrrjVDWFAtrPHpNQNprRABTuIxAKZVLXxpN1peARWmhLJTTIPNFA4ToAU02ZNf7u01cpdR_VK9jWFL8riXUuz7qQx89ebUnqVn-Q3_LH2NgWHM</recordid><startdate>20230207</startdate><enddate>20230207</enddate><creator>Shen, Yanyan</creator><creator>Zhao, Lifan</creator><creator>Cheng, Weiyu</creator><creator>Zhang, Zibin</creator><creator>Zhou, Wenwen</creator><creator>Kangyi, Lin</creator><general>ACM</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0001-6259-392X</orcidid><orcidid>https://orcid.org/0000-0003-3526-8579</orcidid><orcidid>https://orcid.org/0000-0003-2381-6830</orcidid><orcidid>https://orcid.org/0000-0003-3837-7754</orcidid><orcidid>https://orcid.org/0000-0001-8364-3674</orcidid><orcidid>https://orcid.org/0000-0003-2734-6899</orcidid></search><sort><creationdate>20230207</creationdate><title>RESUS: Warm-up Cold Users via Meta-learning Residual User Preferences in CTR Prediction</title><author>Shen, Yanyan ; Zhao, Lifan ; Cheng, Weiyu ; Zhang, Zibin ; Zhou, Wenwen ; Kangyi, Lin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a244t-2d57bd5f8f4a0a4f4880057e3a022261f954adf90879d0972e4016bc0a88f0853</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Information systems</topic><topic>Recommender systems</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shen, Yanyan</creatorcontrib><creatorcontrib>Zhao, Lifan</creatorcontrib><creatorcontrib>Cheng, Weiyu</creatorcontrib><creatorcontrib>Zhang, Zibin</creatorcontrib><creatorcontrib>Zhou, Wenwen</creatorcontrib><creatorcontrib>Kangyi, Lin</creatorcontrib><collection>CrossRef</collection><jtitle>ACM transactions on information systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Shen, Yanyan</au><au>Zhao, Lifan</au><au>Cheng, Weiyu</au><au>Zhang, Zibin</au><au>Zhou, Wenwen</au><au>Kangyi, Lin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>RESUS: Warm-up Cold Users via Meta-learning Residual User Preferences in CTR Prediction</atitle><jtitle>ACM transactions on information systems</jtitle><stitle>ACM TOIS</stitle><date>2023-02-07</date><risdate>2023</risdate><volume>41</volume><issue>3</issue><spage>1</spage><epage>26</epage><pages>1-26</pages><artnum>69</artnum><issn>1046-8188</issn><eissn>1558-2868</eissn><abstract>Click-through Rate (CTR) prediction on cold users is a challenging task in recommender systems. Recent researches have resorted to meta-learning to tackle the cold-user challenge, which either perform few-shot user representation learning or adopt optimization-based meta-learning. However, existing methods suffer from information loss or inefficient optimization process, and they fail to explicitly model global user preference knowledge, which is crucial to complement the sparse and insufficient preference information of cold users. In this article, we propose a novel and efficient approach named RESUS, which decouples the learning of global preference knowledge contributed by collective users from the learning of residual preferences for individual users. Specifically, we employ a shared predictor to infer basis user preferences, which acquires global preference knowledge from the interactions of different users. Meanwhile, we develop two efficient algorithms based on the nearest neighbor and ridge regression predictors, which infer residual user preferences via learning quickly from a few user-specific interactions. Extensive experiments on three public datasets demonstrate that our RESUS approach is efficient and effective in improving CTR prediction accuracy on cold users, compared with various state-of-the-art methods.</abstract><cop>New York, NY</cop><pub>ACM</pub><doi>10.1145/3564283</doi><tpages>26</tpages><orcidid>https://orcid.org/0000-0001-6259-392X</orcidid><orcidid>https://orcid.org/0000-0003-3526-8579</orcidid><orcidid>https://orcid.org/0000-0003-2381-6830</orcidid><orcidid>https://orcid.org/0000-0003-3837-7754</orcidid><orcidid>https://orcid.org/0000-0001-8364-3674</orcidid><orcidid>https://orcid.org/0000-0003-2734-6899</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1046-8188 |
ispartof | ACM transactions on information systems, 2023-02, Vol.41 (3), p.1-26, Article 69 |
issn | 1046-8188 1558-2868 |
language | eng |
recordid | cdi_crossref_primary_10_1145_3564283 |
source | ACM Digital Library Complete |
subjects | Information systems Recommender systems |
title | RESUS: Warm-up Cold Users via Meta-learning Residual User Preferences in CTR Prediction |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T10%3A20%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-acm_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=RESUS:%20Warm-up%20Cold%20Users%20via%20Meta-learning%20Residual%20User%20Preferences%20in%20CTR%20Prediction&rft.jtitle=ACM%20transactions%20on%20information%20systems&rft.au=Shen,%20Yanyan&rft.date=2023-02-07&rft.volume=41&rft.issue=3&rft.spage=1&rft.epage=26&rft.pages=1-26&rft.artnum=69&rft.issn=1046-8188&rft.eissn=1558-2868&rft_id=info:doi/10.1145/3564283&rft_dat=%3Cacm_cross%3E3564283%3C/acm_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |