Addressing Confounding Feature Issue for Causal Recommendation
In recommender systems, some features directly affect whether an interaction would happen, making the happened interactions not necessarily indicate user preference. For instance, short videos are objectively easier to finish even though the user may not like the video. We term such feature as confo...
Gespeichert in:
Veröffentlicht in: | ACM transactions on information systems 2023-02, Vol.41 (3), p.1-23, Article 53 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In recommender systems, some features directly affect whether an interaction would happen, making the happened interactions not necessarily indicate user preference. For instance, short videos are objectively easier to finish even though the user may not like the video. We term such feature as confounding feature, and video length is a confounding feature in video recommendation. If we fit a model on such interaction data, just as done by most data-driven recommender systems, the model will be biased to recommend short videos more, and deviate from user actual requirement.This work formulates and addresses the problem from the causal perspective. Assuming there are some factors affecting both the confounding feature and other item features, e.g., the video creator, we find the confounding feature opens a backdoor path behind user-item matching and introduces spurious correlation. To remove the effect of backdoor path, we propose a framework named Deconfounding Causal Recommendation(DCR), which performs intervened inference with do-calculus. Nevertheless, evaluating do-calculus requires to sum over the prediction on all possible values of confounding feature, significantly increasing the time cost. To address the efficiency challenge, we further propose a mixture-of-experts (MoE) model architecture, modeling each value of confounding feature with a separate expert module. Through this way, we retain the model expressiveness with few additional costs. We demonstrate DCR on the backbone model of neural factorization machine (NFM), showing that DCR leads to more accurate prediction of user preference with small inference time cost. We release our code at: https://github.com/zyang1580/DCR. |
---|---|
ISSN: | 1046-8188 1558-2868 |
DOI: | 10.1145/3559757 |