Neural Photo-Finishing
Image processing pipelines are ubiquitous and we rely on them either directly, by filtering or adjusting an image post-capture, or indirectly, as image signal processing (ISP) pipelines on broadly deployed camera systems. Used by artists, photographers, system engineers, and for downstream vision ta...
Gespeichert in:
Veröffentlicht in: | ACM transactions on graphics 2022-12, Vol.41 (6), p.1-15, Article 238 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 15 |
---|---|
container_issue | 6 |
container_start_page | 1 |
container_title | ACM transactions on graphics |
container_volume | 41 |
creator | Tseng, Ethan Zhang, Yuxuan Jebe, Lars Zhang, Xuaner Xia, Zhihao Fan, Yifei Heide, Felix Chen, Jiawen |
description | Image processing pipelines are ubiquitous and we rely on them either directly, by filtering or adjusting an image post-capture, or indirectly, as image signal processing (ISP) pipelines on broadly deployed camera systems. Used by artists, photographers, system engineers, and for downstream vision tasks, traditional image processing pipelines feature complex algorithmic branches developed over decades. Recently, image-to-image networks have made great strides in image processing, style transfer, and semantic understanding. The differentiable nature of these networks allows them to fit a large corpus of data; however, they do not allow for intuitive, fine-grained controls that photographers find in modern photo-finishing tools. This work closes that gap and presents an approach to making complex photo-finishing pipelines differentiable, allowing legacy algorithms to be trained akin to neural networks using first-order optimization methods. By concatenating tailored network proxy models of individual processing steps (e.g. white-balance, tone-mapping, color tuning), we can model a non-differentiable reference image finishing pipeline more faithfully than existing proxy image-to-image network models. We validate the method for several diverse applications, including photo and video style transfer, slider regression for commercial camera ISPs, photography-driven neural demosaicking, and adversarial photo-editing. |
doi_str_mv | 10.1145/3550454.3555526 |
format | Article |
fullrecord | <record><control><sourceid>acm_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1145_3550454_3555526</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3555526</sourcerecordid><originalsourceid>FETCH-LOGICAL-a301t-c38c3d85b780b787cfc6a466e1d6ed84ae38cc8ef36ed189f3fd498797e753c03</originalsourceid><addsrcrecordid>eNo9j01LAzEQhgdRcK1eFTz5B9JOnEySPUqxKhT1oOcQs4ldabuS1IP_3khXD8PL8H7AA3AhcSql4hkxo2I1rcp8rQ-gkcxGGNL2EBo0hAIJ5TGclPKBiFop3cD5Y_zKfn31vBp2g1j0276s-u37KRwlvy7xbNQJvC5uX-b3Yvl09zC_WQpfp3YikA3UWX4zFuuZkIL2SusoOx07q3ysgWBjovpK2yZKnWqtaU00TAFpArP9bshDKTkm95n7jc_fTqL7xXIjlhuxauNy3_Bh8x_-M38AwP5Gbw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Neural Photo-Finishing</title><source>ACM Digital Library</source><creator>Tseng, Ethan ; Zhang, Yuxuan ; Jebe, Lars ; Zhang, Xuaner ; Xia, Zhihao ; Fan, Yifei ; Heide, Felix ; Chen, Jiawen</creator><creatorcontrib>Tseng, Ethan ; Zhang, Yuxuan ; Jebe, Lars ; Zhang, Xuaner ; Xia, Zhihao ; Fan, Yifei ; Heide, Felix ; Chen, Jiawen</creatorcontrib><description>Image processing pipelines are ubiquitous and we rely on them either directly, by filtering or adjusting an image post-capture, or indirectly, as image signal processing (ISP) pipelines on broadly deployed camera systems. Used by artists, photographers, system engineers, and for downstream vision tasks, traditional image processing pipelines feature complex algorithmic branches developed over decades. Recently, image-to-image networks have made great strides in image processing, style transfer, and semantic understanding. The differentiable nature of these networks allows them to fit a large corpus of data; however, they do not allow for intuitive, fine-grained controls that photographers find in modern photo-finishing tools. This work closes that gap and presents an approach to making complex photo-finishing pipelines differentiable, allowing legacy algorithms to be trained akin to neural networks using first-order optimization methods. By concatenating tailored network proxy models of individual processing steps (e.g. white-balance, tone-mapping, color tuning), we can model a non-differentiable reference image finishing pipeline more faithfully than existing proxy image-to-image network models. We validate the method for several diverse applications, including photo and video style transfer, slider regression for commercial camera ISPs, photography-driven neural demosaicking, and adversarial photo-editing.</description><identifier>ISSN: 0730-0301</identifier><identifier>EISSN: 1557-7368</identifier><identifier>DOI: 10.1145/3550454.3555526</identifier><language>eng</language><publisher>New York, NY, USA: ACM</publisher><subject>Computational photography ; Computer graphics ; Computing methodologies ; Image manipulation</subject><ispartof>ACM transactions on graphics, 2022-12, Vol.41 (6), p.1-15, Article 238</ispartof><rights>Owner/Author</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a301t-c38c3d85b780b787cfc6a466e1d6ed84ae38cc8ef36ed189f3fd498797e753c03</citedby><cites>FETCH-LOGICAL-a301t-c38c3d85b780b787cfc6a466e1d6ed84ae38cc8ef36ed189f3fd498797e753c03</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://dl.acm.org/doi/pdf/10.1145/3550454.3555526$$EPDF$$P50$$Gacm$$Hfree_for_read</linktopdf><link.rule.ids>314,776,780,2275,27903,27904,40175,75974</link.rule.ids></links><search><creatorcontrib>Tseng, Ethan</creatorcontrib><creatorcontrib>Zhang, Yuxuan</creatorcontrib><creatorcontrib>Jebe, Lars</creatorcontrib><creatorcontrib>Zhang, Xuaner</creatorcontrib><creatorcontrib>Xia, Zhihao</creatorcontrib><creatorcontrib>Fan, Yifei</creatorcontrib><creatorcontrib>Heide, Felix</creatorcontrib><creatorcontrib>Chen, Jiawen</creatorcontrib><title>Neural Photo-Finishing</title><title>ACM transactions on graphics</title><addtitle>ACM TOG</addtitle><description>Image processing pipelines are ubiquitous and we rely on them either directly, by filtering or adjusting an image post-capture, or indirectly, as image signal processing (ISP) pipelines on broadly deployed camera systems. Used by artists, photographers, system engineers, and for downstream vision tasks, traditional image processing pipelines feature complex algorithmic branches developed over decades. Recently, image-to-image networks have made great strides in image processing, style transfer, and semantic understanding. The differentiable nature of these networks allows them to fit a large corpus of data; however, they do not allow for intuitive, fine-grained controls that photographers find in modern photo-finishing tools. This work closes that gap and presents an approach to making complex photo-finishing pipelines differentiable, allowing legacy algorithms to be trained akin to neural networks using first-order optimization methods. By concatenating tailored network proxy models of individual processing steps (e.g. white-balance, tone-mapping, color tuning), we can model a non-differentiable reference image finishing pipeline more faithfully than existing proxy image-to-image network models. We validate the method for several diverse applications, including photo and video style transfer, slider regression for commercial camera ISPs, photography-driven neural demosaicking, and adversarial photo-editing.</description><subject>Computational photography</subject><subject>Computer graphics</subject><subject>Computing methodologies</subject><subject>Image manipulation</subject><issn>0730-0301</issn><issn>1557-7368</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNo9j01LAzEQhgdRcK1eFTz5B9JOnEySPUqxKhT1oOcQs4ldabuS1IP_3khXD8PL8H7AA3AhcSql4hkxo2I1rcp8rQ-gkcxGGNL2EBo0hAIJ5TGclPKBiFop3cD5Y_zKfn31vBp2g1j0276s-u37KRwlvy7xbNQJvC5uX-b3Yvl09zC_WQpfp3YikA3UWX4zFuuZkIL2SusoOx07q3ysgWBjovpK2yZKnWqtaU00TAFpArP9bshDKTkm95n7jc_fTqL7xXIjlhuxauNy3_Bh8x_-M38AwP5Gbw</recordid><startdate>20221201</startdate><enddate>20221201</enddate><creator>Tseng, Ethan</creator><creator>Zhang, Yuxuan</creator><creator>Jebe, Lars</creator><creator>Zhang, Xuaner</creator><creator>Xia, Zhihao</creator><creator>Fan, Yifei</creator><creator>Heide, Felix</creator><creator>Chen, Jiawen</creator><general>ACM</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20221201</creationdate><title>Neural Photo-Finishing</title><author>Tseng, Ethan ; Zhang, Yuxuan ; Jebe, Lars ; Zhang, Xuaner ; Xia, Zhihao ; Fan, Yifei ; Heide, Felix ; Chen, Jiawen</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a301t-c38c3d85b780b787cfc6a466e1d6ed84ae38cc8ef36ed189f3fd498797e753c03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Computational photography</topic><topic>Computer graphics</topic><topic>Computing methodologies</topic><topic>Image manipulation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tseng, Ethan</creatorcontrib><creatorcontrib>Zhang, Yuxuan</creatorcontrib><creatorcontrib>Jebe, Lars</creatorcontrib><creatorcontrib>Zhang, Xuaner</creatorcontrib><creatorcontrib>Xia, Zhihao</creatorcontrib><creatorcontrib>Fan, Yifei</creatorcontrib><creatorcontrib>Heide, Felix</creatorcontrib><creatorcontrib>Chen, Jiawen</creatorcontrib><collection>CrossRef</collection><jtitle>ACM transactions on graphics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tseng, Ethan</au><au>Zhang, Yuxuan</au><au>Jebe, Lars</au><au>Zhang, Xuaner</au><au>Xia, Zhihao</au><au>Fan, Yifei</au><au>Heide, Felix</au><au>Chen, Jiawen</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Neural Photo-Finishing</atitle><jtitle>ACM transactions on graphics</jtitle><stitle>ACM TOG</stitle><date>2022-12-01</date><risdate>2022</risdate><volume>41</volume><issue>6</issue><spage>1</spage><epage>15</epage><pages>1-15</pages><artnum>238</artnum><issn>0730-0301</issn><eissn>1557-7368</eissn><abstract>Image processing pipelines are ubiquitous and we rely on them either directly, by filtering or adjusting an image post-capture, or indirectly, as image signal processing (ISP) pipelines on broadly deployed camera systems. Used by artists, photographers, system engineers, and for downstream vision tasks, traditional image processing pipelines feature complex algorithmic branches developed over decades. Recently, image-to-image networks have made great strides in image processing, style transfer, and semantic understanding. The differentiable nature of these networks allows them to fit a large corpus of data; however, they do not allow for intuitive, fine-grained controls that photographers find in modern photo-finishing tools. This work closes that gap and presents an approach to making complex photo-finishing pipelines differentiable, allowing legacy algorithms to be trained akin to neural networks using first-order optimization methods. By concatenating tailored network proxy models of individual processing steps (e.g. white-balance, tone-mapping, color tuning), we can model a non-differentiable reference image finishing pipeline more faithfully than existing proxy image-to-image network models. We validate the method for several diverse applications, including photo and video style transfer, slider regression for commercial camera ISPs, photography-driven neural demosaicking, and adversarial photo-editing.</abstract><cop>New York, NY, USA</cop><pub>ACM</pub><doi>10.1145/3550454.3555526</doi><tpages>15</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0730-0301 |
ispartof | ACM transactions on graphics, 2022-12, Vol.41 (6), p.1-15, Article 238 |
issn | 0730-0301 1557-7368 |
language | eng |
recordid | cdi_crossref_primary_10_1145_3550454_3555526 |
source | ACM Digital Library |
subjects | Computational photography Computer graphics Computing methodologies Image manipulation |
title | Neural Photo-Finishing |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T16%3A45%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-acm_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Neural%20Photo-Finishing&rft.jtitle=ACM%20transactions%20on%20graphics&rft.au=Tseng,%20Ethan&rft.date=2022-12-01&rft.volume=41&rft.issue=6&rft.spage=1&rft.epage=15&rft.pages=1-15&rft.artnum=238&rft.issn=0730-0301&rft.eissn=1557-7368&rft_id=info:doi/10.1145/3550454.3555526&rft_dat=%3Cacm_cross%3E3555526%3C/acm_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |