Neural Photo-Finishing

Image processing pipelines are ubiquitous and we rely on them either directly, by filtering or adjusting an image post-capture, or indirectly, as image signal processing (ISP) pipelines on broadly deployed camera systems. Used by artists, photographers, system engineers, and for downstream vision ta...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACM transactions on graphics 2022-12, Vol.41 (6), p.1-15, Article 238
Hauptverfasser: Tseng, Ethan, Zhang, Yuxuan, Jebe, Lars, Zhang, Xuaner, Xia, Zhihao, Fan, Yifei, Heide, Felix, Chen, Jiawen
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 15
container_issue 6
container_start_page 1
container_title ACM transactions on graphics
container_volume 41
creator Tseng, Ethan
Zhang, Yuxuan
Jebe, Lars
Zhang, Xuaner
Xia, Zhihao
Fan, Yifei
Heide, Felix
Chen, Jiawen
description Image processing pipelines are ubiquitous and we rely on them either directly, by filtering or adjusting an image post-capture, or indirectly, as image signal processing (ISP) pipelines on broadly deployed camera systems. Used by artists, photographers, system engineers, and for downstream vision tasks, traditional image processing pipelines feature complex algorithmic branches developed over decades. Recently, image-to-image networks have made great strides in image processing, style transfer, and semantic understanding. The differentiable nature of these networks allows them to fit a large corpus of data; however, they do not allow for intuitive, fine-grained controls that photographers find in modern photo-finishing tools. This work closes that gap and presents an approach to making complex photo-finishing pipelines differentiable, allowing legacy algorithms to be trained akin to neural networks using first-order optimization methods. By concatenating tailored network proxy models of individual processing steps (e.g. white-balance, tone-mapping, color tuning), we can model a non-differentiable reference image finishing pipeline more faithfully than existing proxy image-to-image network models. We validate the method for several diverse applications, including photo and video style transfer, slider regression for commercial camera ISPs, photography-driven neural demosaicking, and adversarial photo-editing.
doi_str_mv 10.1145/3550454.3555526
format Article
fullrecord <record><control><sourceid>acm_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1145_3550454_3555526</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3555526</sourcerecordid><originalsourceid>FETCH-LOGICAL-a301t-c38c3d85b780b787cfc6a466e1d6ed84ae38cc8ef36ed189f3fd498797e753c03</originalsourceid><addsrcrecordid>eNo9j01LAzEQhgdRcK1eFTz5B9JOnEySPUqxKhT1oOcQs4ldabuS1IP_3khXD8PL8H7AA3AhcSql4hkxo2I1rcp8rQ-gkcxGGNL2EBo0hAIJ5TGclPKBiFop3cD5Y_zKfn31vBp2g1j0276s-u37KRwlvy7xbNQJvC5uX-b3Yvl09zC_WQpfp3YikA3UWX4zFuuZkIL2SusoOx07q3ysgWBjovpK2yZKnWqtaU00TAFpArP9bshDKTkm95n7jc_fTqL7xXIjlhuxauNy3_Bh8x_-M38AwP5Gbw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Neural Photo-Finishing</title><source>ACM Digital Library</source><creator>Tseng, Ethan ; Zhang, Yuxuan ; Jebe, Lars ; Zhang, Xuaner ; Xia, Zhihao ; Fan, Yifei ; Heide, Felix ; Chen, Jiawen</creator><creatorcontrib>Tseng, Ethan ; Zhang, Yuxuan ; Jebe, Lars ; Zhang, Xuaner ; Xia, Zhihao ; Fan, Yifei ; Heide, Felix ; Chen, Jiawen</creatorcontrib><description>Image processing pipelines are ubiquitous and we rely on them either directly, by filtering or adjusting an image post-capture, or indirectly, as image signal processing (ISP) pipelines on broadly deployed camera systems. Used by artists, photographers, system engineers, and for downstream vision tasks, traditional image processing pipelines feature complex algorithmic branches developed over decades. Recently, image-to-image networks have made great strides in image processing, style transfer, and semantic understanding. The differentiable nature of these networks allows them to fit a large corpus of data; however, they do not allow for intuitive, fine-grained controls that photographers find in modern photo-finishing tools. This work closes that gap and presents an approach to making complex photo-finishing pipelines differentiable, allowing legacy algorithms to be trained akin to neural networks using first-order optimization methods. By concatenating tailored network proxy models of individual processing steps (e.g. white-balance, tone-mapping, color tuning), we can model a non-differentiable reference image finishing pipeline more faithfully than existing proxy image-to-image network models. We validate the method for several diverse applications, including photo and video style transfer, slider regression for commercial camera ISPs, photography-driven neural demosaicking, and adversarial photo-editing.</description><identifier>ISSN: 0730-0301</identifier><identifier>EISSN: 1557-7368</identifier><identifier>DOI: 10.1145/3550454.3555526</identifier><language>eng</language><publisher>New York, NY, USA: ACM</publisher><subject>Computational photography ; Computer graphics ; Computing methodologies ; Image manipulation</subject><ispartof>ACM transactions on graphics, 2022-12, Vol.41 (6), p.1-15, Article 238</ispartof><rights>Owner/Author</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a301t-c38c3d85b780b787cfc6a466e1d6ed84ae38cc8ef36ed189f3fd498797e753c03</citedby><cites>FETCH-LOGICAL-a301t-c38c3d85b780b787cfc6a466e1d6ed84ae38cc8ef36ed189f3fd498797e753c03</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://dl.acm.org/doi/pdf/10.1145/3550454.3555526$$EPDF$$P50$$Gacm$$Hfree_for_read</linktopdf><link.rule.ids>314,776,780,2275,27903,27904,40175,75974</link.rule.ids></links><search><creatorcontrib>Tseng, Ethan</creatorcontrib><creatorcontrib>Zhang, Yuxuan</creatorcontrib><creatorcontrib>Jebe, Lars</creatorcontrib><creatorcontrib>Zhang, Xuaner</creatorcontrib><creatorcontrib>Xia, Zhihao</creatorcontrib><creatorcontrib>Fan, Yifei</creatorcontrib><creatorcontrib>Heide, Felix</creatorcontrib><creatorcontrib>Chen, Jiawen</creatorcontrib><title>Neural Photo-Finishing</title><title>ACM transactions on graphics</title><addtitle>ACM TOG</addtitle><description>Image processing pipelines are ubiquitous and we rely on them either directly, by filtering or adjusting an image post-capture, or indirectly, as image signal processing (ISP) pipelines on broadly deployed camera systems. Used by artists, photographers, system engineers, and for downstream vision tasks, traditional image processing pipelines feature complex algorithmic branches developed over decades. Recently, image-to-image networks have made great strides in image processing, style transfer, and semantic understanding. The differentiable nature of these networks allows them to fit a large corpus of data; however, they do not allow for intuitive, fine-grained controls that photographers find in modern photo-finishing tools. This work closes that gap and presents an approach to making complex photo-finishing pipelines differentiable, allowing legacy algorithms to be trained akin to neural networks using first-order optimization methods. By concatenating tailored network proxy models of individual processing steps (e.g. white-balance, tone-mapping, color tuning), we can model a non-differentiable reference image finishing pipeline more faithfully than existing proxy image-to-image network models. We validate the method for several diverse applications, including photo and video style transfer, slider regression for commercial camera ISPs, photography-driven neural demosaicking, and adversarial photo-editing.</description><subject>Computational photography</subject><subject>Computer graphics</subject><subject>Computing methodologies</subject><subject>Image manipulation</subject><issn>0730-0301</issn><issn>1557-7368</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNo9j01LAzEQhgdRcK1eFTz5B9JOnEySPUqxKhT1oOcQs4ldabuS1IP_3khXD8PL8H7AA3AhcSql4hkxo2I1rcp8rQ-gkcxGGNL2EBo0hAIJ5TGclPKBiFop3cD5Y_zKfn31vBp2g1j0276s-u37KRwlvy7xbNQJvC5uX-b3Yvl09zC_WQpfp3YikA3UWX4zFuuZkIL2SusoOx07q3ysgWBjovpK2yZKnWqtaU00TAFpArP9bshDKTkm95n7jc_fTqL7xXIjlhuxauNy3_Bh8x_-M38AwP5Gbw</recordid><startdate>20221201</startdate><enddate>20221201</enddate><creator>Tseng, Ethan</creator><creator>Zhang, Yuxuan</creator><creator>Jebe, Lars</creator><creator>Zhang, Xuaner</creator><creator>Xia, Zhihao</creator><creator>Fan, Yifei</creator><creator>Heide, Felix</creator><creator>Chen, Jiawen</creator><general>ACM</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20221201</creationdate><title>Neural Photo-Finishing</title><author>Tseng, Ethan ; Zhang, Yuxuan ; Jebe, Lars ; Zhang, Xuaner ; Xia, Zhihao ; Fan, Yifei ; Heide, Felix ; Chen, Jiawen</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a301t-c38c3d85b780b787cfc6a466e1d6ed84ae38cc8ef36ed189f3fd498797e753c03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Computational photography</topic><topic>Computer graphics</topic><topic>Computing methodologies</topic><topic>Image manipulation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tseng, Ethan</creatorcontrib><creatorcontrib>Zhang, Yuxuan</creatorcontrib><creatorcontrib>Jebe, Lars</creatorcontrib><creatorcontrib>Zhang, Xuaner</creatorcontrib><creatorcontrib>Xia, Zhihao</creatorcontrib><creatorcontrib>Fan, Yifei</creatorcontrib><creatorcontrib>Heide, Felix</creatorcontrib><creatorcontrib>Chen, Jiawen</creatorcontrib><collection>CrossRef</collection><jtitle>ACM transactions on graphics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tseng, Ethan</au><au>Zhang, Yuxuan</au><au>Jebe, Lars</au><au>Zhang, Xuaner</au><au>Xia, Zhihao</au><au>Fan, Yifei</au><au>Heide, Felix</au><au>Chen, Jiawen</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Neural Photo-Finishing</atitle><jtitle>ACM transactions on graphics</jtitle><stitle>ACM TOG</stitle><date>2022-12-01</date><risdate>2022</risdate><volume>41</volume><issue>6</issue><spage>1</spage><epage>15</epage><pages>1-15</pages><artnum>238</artnum><issn>0730-0301</issn><eissn>1557-7368</eissn><abstract>Image processing pipelines are ubiquitous and we rely on them either directly, by filtering or adjusting an image post-capture, or indirectly, as image signal processing (ISP) pipelines on broadly deployed camera systems. Used by artists, photographers, system engineers, and for downstream vision tasks, traditional image processing pipelines feature complex algorithmic branches developed over decades. Recently, image-to-image networks have made great strides in image processing, style transfer, and semantic understanding. The differentiable nature of these networks allows them to fit a large corpus of data; however, they do not allow for intuitive, fine-grained controls that photographers find in modern photo-finishing tools. This work closes that gap and presents an approach to making complex photo-finishing pipelines differentiable, allowing legacy algorithms to be trained akin to neural networks using first-order optimization methods. By concatenating tailored network proxy models of individual processing steps (e.g. white-balance, tone-mapping, color tuning), we can model a non-differentiable reference image finishing pipeline more faithfully than existing proxy image-to-image network models. We validate the method for several diverse applications, including photo and video style transfer, slider regression for commercial camera ISPs, photography-driven neural demosaicking, and adversarial photo-editing.</abstract><cop>New York, NY, USA</cop><pub>ACM</pub><doi>10.1145/3550454.3555526</doi><tpages>15</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0730-0301
ispartof ACM transactions on graphics, 2022-12, Vol.41 (6), p.1-15, Article 238
issn 0730-0301
1557-7368
language eng
recordid cdi_crossref_primary_10_1145_3550454_3555526
source ACM Digital Library
subjects Computational photography
Computer graphics
Computing methodologies
Image manipulation
title Neural Photo-Finishing
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T16%3A45%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-acm_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Neural%20Photo-Finishing&rft.jtitle=ACM%20transactions%20on%20graphics&rft.au=Tseng,%20Ethan&rft.date=2022-12-01&rft.volume=41&rft.issue=6&rft.spage=1&rft.epage=15&rft.pages=1-15&rft.artnum=238&rft.issn=0730-0301&rft.eissn=1557-7368&rft_id=info:doi/10.1145/3550454.3555526&rft_dat=%3Cacm_cross%3E3555526%3C/acm_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true