A Survey on Cross-domain Recommendation: Taxonomies, Methods, and Future Directions
Traditional recommendation systems are faced with two long-standing obstacles, namely data sparsity and cold-start problems, which promote the emergence and development of Cross-Domain Recommendation (CDR). The core idea of CDR is to leverage information collected from other domains to alleviate the...
Gespeichert in:
Veröffentlicht in: | ACM transactions on information systems 2022-12, Vol.41 (2), p.1-39, Article 42 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 39 |
---|---|
container_issue | 2 |
container_start_page | 1 |
container_title | ACM transactions on information systems |
container_volume | 41 |
creator | Zang, Tianzi Zhu, Yanmin Liu, Haobing Zhang, Ruohan Yu, Jiadi |
description | Traditional recommendation systems are faced with two long-standing obstacles, namely data sparsity and cold-start problems, which promote the emergence and development of Cross-Domain Recommendation (CDR). The core idea of CDR is to leverage information collected from other domains to alleviate the two problems in one domain. Since the early 2010s, many efforts have been engaged for cross-domain recommendation. Recently, with the development of deep learning and neural networks, a large number of methods have emerged. However, there is a limited number of systematic surveys on CDR, especially regarding the latest proposed methods as well as the recommendation scenarios and recommendation tasks they address. In this survey article, we first proposed a two-level taxonomy of cross-domain recommendation that classifies different recommendation scenarios and recommendation tasks. We then introduce and summarize existing cross-domain recommendation approaches under different recommendation scenarios in a structured manner. We also organize datasets commonly used. We conclude this survey by providing several potential research directions about this field. |
doi_str_mv | 10.1145/3548455 |
format | Article |
fullrecord | <record><control><sourceid>acm_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1145_3548455</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3548455</sourcerecordid><originalsourceid>FETCH-LOGICAL-a244t-8d8ae325370cf74de7d776fe568dedeb843a39955ecf9e658dcac8548d5b4b983</originalsourceid><addsrcrecordid>eNo9kEFLxDAQhYMouK7i3VNuXoymTdJOvS3VVWFFcNdzSZMpVmwiSSvuv7dlV0_zhvl4vHmEnCf8OkmkuhFKglTqgMwSpYClkMHhqLnMGCQAx-Qkxg_Oxz3jM7Je0PUQvnFLvaNl8DEy6zvdOvqKxncdOqv71rtbutE_3vmuxXhFn7F_93YU2lm6HPohIL1rA5oJjafkqNGfEc_2c07elveb8pGtXh6eysWK6VTKnoEFjSJVIuemyaXF3OZ51qDKwKLFGqTQoiiUQtMUmCmwRhsYv7OqlnUBYk4ud75myh2wqb5C2-mwrRJeTV1U-y5G8mJHatP9Q3_HX2czWbU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>A Survey on Cross-domain Recommendation: Taxonomies, Methods, and Future Directions</title><source>ACM Digital Library Complete</source><creator>Zang, Tianzi ; Zhu, Yanmin ; Liu, Haobing ; Zhang, Ruohan ; Yu, Jiadi</creator><creatorcontrib>Zang, Tianzi ; Zhu, Yanmin ; Liu, Haobing ; Zhang, Ruohan ; Yu, Jiadi</creatorcontrib><description>Traditional recommendation systems are faced with two long-standing obstacles, namely data sparsity and cold-start problems, which promote the emergence and development of Cross-Domain Recommendation (CDR). The core idea of CDR is to leverage information collected from other domains to alleviate the two problems in one domain. Since the early 2010s, many efforts have been engaged for cross-domain recommendation. Recently, with the development of deep learning and neural networks, a large number of methods have emerged. However, there is a limited number of systematic surveys on CDR, especially regarding the latest proposed methods as well as the recommendation scenarios and recommendation tasks they address. In this survey article, we first proposed a two-level taxonomy of cross-domain recommendation that classifies different recommendation scenarios and recommendation tasks. We then introduce and summarize existing cross-domain recommendation approaches under different recommendation scenarios in a structured manner. We also organize datasets commonly used. We conclude this survey by providing several potential research directions about this field.</description><identifier>ISSN: 1046-8188</identifier><identifier>EISSN: 1558-2868</identifier><identifier>DOI: 10.1145/3548455</identifier><language>eng</language><publisher>New York, NY: ACM</publisher><subject>Information systems ; Recommender systems</subject><ispartof>ACM transactions on information systems, 2022-12, Vol.41 (2), p.1-39, Article 42</ispartof><rights>Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a244t-8d8ae325370cf74de7d776fe568dedeb843a39955ecf9e658dcac8548d5b4b983</citedby><cites>FETCH-LOGICAL-a244t-8d8ae325370cf74de7d776fe568dedeb843a39955ecf9e658dcac8548d5b4b983</cites><orcidid>0000-0003-1764-0023 ; 0000-0002-0207-9643 ; 0000-0001-6406-4992 ; 0000-0002-2546-3306 ; 0000-0001-9390-3740</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://dl.acm.org/doi/pdf/10.1145/3548455$$EPDF$$P50$$Gacm$$H</linktopdf><link.rule.ids>314,776,780,2276,27901,27902,40172,75971</link.rule.ids></links><search><creatorcontrib>Zang, Tianzi</creatorcontrib><creatorcontrib>Zhu, Yanmin</creatorcontrib><creatorcontrib>Liu, Haobing</creatorcontrib><creatorcontrib>Zhang, Ruohan</creatorcontrib><creatorcontrib>Yu, Jiadi</creatorcontrib><title>A Survey on Cross-domain Recommendation: Taxonomies, Methods, and Future Directions</title><title>ACM transactions on information systems</title><addtitle>ACM TOIS</addtitle><description>Traditional recommendation systems are faced with two long-standing obstacles, namely data sparsity and cold-start problems, which promote the emergence and development of Cross-Domain Recommendation (CDR). The core idea of CDR is to leverage information collected from other domains to alleviate the two problems in one domain. Since the early 2010s, many efforts have been engaged for cross-domain recommendation. Recently, with the development of deep learning and neural networks, a large number of methods have emerged. However, there is a limited number of systematic surveys on CDR, especially regarding the latest proposed methods as well as the recommendation scenarios and recommendation tasks they address. In this survey article, we first proposed a two-level taxonomy of cross-domain recommendation that classifies different recommendation scenarios and recommendation tasks. We then introduce and summarize existing cross-domain recommendation approaches under different recommendation scenarios in a structured manner. We also organize datasets commonly used. We conclude this survey by providing several potential research directions about this field.</description><subject>Information systems</subject><subject>Recommender systems</subject><issn>1046-8188</issn><issn>1558-2868</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNo9kEFLxDAQhYMouK7i3VNuXoymTdJOvS3VVWFFcNdzSZMpVmwiSSvuv7dlV0_zhvl4vHmEnCf8OkmkuhFKglTqgMwSpYClkMHhqLnMGCQAx-Qkxg_Oxz3jM7Je0PUQvnFLvaNl8DEy6zvdOvqKxncdOqv71rtbutE_3vmuxXhFn7F_93YU2lm6HPohIL1rA5oJjafkqNGfEc_2c07elveb8pGtXh6eysWK6VTKnoEFjSJVIuemyaXF3OZ51qDKwKLFGqTQoiiUQtMUmCmwRhsYv7OqlnUBYk4ud75myh2wqb5C2-mwrRJeTV1U-y5G8mJHatP9Q3_HX2czWbU</recordid><startdate>20221221</startdate><enddate>20221221</enddate><creator>Zang, Tianzi</creator><creator>Zhu, Yanmin</creator><creator>Liu, Haobing</creator><creator>Zhang, Ruohan</creator><creator>Yu, Jiadi</creator><general>ACM</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0003-1764-0023</orcidid><orcidid>https://orcid.org/0000-0002-0207-9643</orcidid><orcidid>https://orcid.org/0000-0001-6406-4992</orcidid><orcidid>https://orcid.org/0000-0002-2546-3306</orcidid><orcidid>https://orcid.org/0000-0001-9390-3740</orcidid></search><sort><creationdate>20221221</creationdate><title>A Survey on Cross-domain Recommendation: Taxonomies, Methods, and Future Directions</title><author>Zang, Tianzi ; Zhu, Yanmin ; Liu, Haobing ; Zhang, Ruohan ; Yu, Jiadi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a244t-8d8ae325370cf74de7d776fe568dedeb843a39955ecf9e658dcac8548d5b4b983</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Information systems</topic><topic>Recommender systems</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zang, Tianzi</creatorcontrib><creatorcontrib>Zhu, Yanmin</creatorcontrib><creatorcontrib>Liu, Haobing</creatorcontrib><creatorcontrib>Zhang, Ruohan</creatorcontrib><creatorcontrib>Yu, Jiadi</creatorcontrib><collection>CrossRef</collection><jtitle>ACM transactions on information systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zang, Tianzi</au><au>Zhu, Yanmin</au><au>Liu, Haobing</au><au>Zhang, Ruohan</au><au>Yu, Jiadi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Survey on Cross-domain Recommendation: Taxonomies, Methods, and Future Directions</atitle><jtitle>ACM transactions on information systems</jtitle><stitle>ACM TOIS</stitle><date>2022-12-21</date><risdate>2022</risdate><volume>41</volume><issue>2</issue><spage>1</spage><epage>39</epage><pages>1-39</pages><artnum>42</artnum><issn>1046-8188</issn><eissn>1558-2868</eissn><abstract>Traditional recommendation systems are faced with two long-standing obstacles, namely data sparsity and cold-start problems, which promote the emergence and development of Cross-Domain Recommendation (CDR). The core idea of CDR is to leverage information collected from other domains to alleviate the two problems in one domain. Since the early 2010s, many efforts have been engaged for cross-domain recommendation. Recently, with the development of deep learning and neural networks, a large number of methods have emerged. However, there is a limited number of systematic surveys on CDR, especially regarding the latest proposed methods as well as the recommendation scenarios and recommendation tasks they address. In this survey article, we first proposed a two-level taxonomy of cross-domain recommendation that classifies different recommendation scenarios and recommendation tasks. We then introduce and summarize existing cross-domain recommendation approaches under different recommendation scenarios in a structured manner. We also organize datasets commonly used. We conclude this survey by providing several potential research directions about this field.</abstract><cop>New York, NY</cop><pub>ACM</pub><doi>10.1145/3548455</doi><tpages>39</tpages><orcidid>https://orcid.org/0000-0003-1764-0023</orcidid><orcidid>https://orcid.org/0000-0002-0207-9643</orcidid><orcidid>https://orcid.org/0000-0001-6406-4992</orcidid><orcidid>https://orcid.org/0000-0002-2546-3306</orcidid><orcidid>https://orcid.org/0000-0001-9390-3740</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1046-8188 |
ispartof | ACM transactions on information systems, 2022-12, Vol.41 (2), p.1-39, Article 42 |
issn | 1046-8188 1558-2868 |
language | eng |
recordid | cdi_crossref_primary_10_1145_3548455 |
source | ACM Digital Library Complete |
subjects | Information systems Recommender systems |
title | A Survey on Cross-domain Recommendation: Taxonomies, Methods, and Future Directions |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T00%3A56%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-acm_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Survey%20on%20Cross-domain%20Recommendation:%20Taxonomies,%20Methods,%20and%20Future%20Directions&rft.jtitle=ACM%20transactions%20on%20information%20systems&rft.au=Zang,%20Tianzi&rft.date=2022-12-21&rft.volume=41&rft.issue=2&rft.spage=1&rft.epage=39&rft.pages=1-39&rft.artnum=42&rft.issn=1046-8188&rft.eissn=1558-2868&rft_id=info:doi/10.1145/3548455&rft_dat=%3Cacm_cross%3E3548455%3C/acm_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |