A Survey on Cross-domain Recommendation: Taxonomies, Methods, and Future Directions

Traditional recommendation systems are faced with two long-standing obstacles, namely data sparsity and cold-start problems, which promote the emergence and development of Cross-Domain Recommendation (CDR). The core idea of CDR is to leverage information collected from other domains to alleviate the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACM transactions on information systems 2022-12, Vol.41 (2), p.1-39, Article 42
Hauptverfasser: Zang, Tianzi, Zhu, Yanmin, Liu, Haobing, Zhang, Ruohan, Yu, Jiadi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 39
container_issue 2
container_start_page 1
container_title ACM transactions on information systems
container_volume 41
creator Zang, Tianzi
Zhu, Yanmin
Liu, Haobing
Zhang, Ruohan
Yu, Jiadi
description Traditional recommendation systems are faced with two long-standing obstacles, namely data sparsity and cold-start problems, which promote the emergence and development of Cross-Domain Recommendation (CDR). The core idea of CDR is to leverage information collected from other domains to alleviate the two problems in one domain. Since the early 2010s, many efforts have been engaged for cross-domain recommendation. Recently, with the development of deep learning and neural networks, a large number of methods have emerged. However, there is a limited number of systematic surveys on CDR, especially regarding the latest proposed methods as well as the recommendation scenarios and recommendation tasks they address. In this survey article, we first proposed a two-level taxonomy of cross-domain recommendation that classifies different recommendation scenarios and recommendation tasks. We then introduce and summarize existing cross-domain recommendation approaches under different recommendation scenarios in a structured manner. We also organize datasets commonly used. We conclude this survey by providing several potential research directions about this field.
doi_str_mv 10.1145/3548455
format Article
fullrecord <record><control><sourceid>acm_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1145_3548455</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3548455</sourcerecordid><originalsourceid>FETCH-LOGICAL-a244t-8d8ae325370cf74de7d776fe568dedeb843a39955ecf9e658dcac8548d5b4b983</originalsourceid><addsrcrecordid>eNo9kEFLxDAQhYMouK7i3VNuXoymTdJOvS3VVWFFcNdzSZMpVmwiSSvuv7dlV0_zhvl4vHmEnCf8OkmkuhFKglTqgMwSpYClkMHhqLnMGCQAx-Qkxg_Oxz3jM7Je0PUQvnFLvaNl8DEy6zvdOvqKxncdOqv71rtbutE_3vmuxXhFn7F_93YU2lm6HPohIL1rA5oJjafkqNGfEc_2c07elveb8pGtXh6eysWK6VTKnoEFjSJVIuemyaXF3OZ51qDKwKLFGqTQoiiUQtMUmCmwRhsYv7OqlnUBYk4ud75myh2wqb5C2-mwrRJeTV1U-y5G8mJHatP9Q3_HX2czWbU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>A Survey on Cross-domain Recommendation: Taxonomies, Methods, and Future Directions</title><source>ACM Digital Library Complete</source><creator>Zang, Tianzi ; Zhu, Yanmin ; Liu, Haobing ; Zhang, Ruohan ; Yu, Jiadi</creator><creatorcontrib>Zang, Tianzi ; Zhu, Yanmin ; Liu, Haobing ; Zhang, Ruohan ; Yu, Jiadi</creatorcontrib><description>Traditional recommendation systems are faced with two long-standing obstacles, namely data sparsity and cold-start problems, which promote the emergence and development of Cross-Domain Recommendation (CDR). The core idea of CDR is to leverage information collected from other domains to alleviate the two problems in one domain. Since the early 2010s, many efforts have been engaged for cross-domain recommendation. Recently, with the development of deep learning and neural networks, a large number of methods have emerged. However, there is a limited number of systematic surveys on CDR, especially regarding the latest proposed methods as well as the recommendation scenarios and recommendation tasks they address. In this survey article, we first proposed a two-level taxonomy of cross-domain recommendation that classifies different recommendation scenarios and recommendation tasks. We then introduce and summarize existing cross-domain recommendation approaches under different recommendation scenarios in a structured manner. We also organize datasets commonly used. We conclude this survey by providing several potential research directions about this field.</description><identifier>ISSN: 1046-8188</identifier><identifier>EISSN: 1558-2868</identifier><identifier>DOI: 10.1145/3548455</identifier><language>eng</language><publisher>New York, NY: ACM</publisher><subject>Information systems ; Recommender systems</subject><ispartof>ACM transactions on information systems, 2022-12, Vol.41 (2), p.1-39, Article 42</ispartof><rights>Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a244t-8d8ae325370cf74de7d776fe568dedeb843a39955ecf9e658dcac8548d5b4b983</citedby><cites>FETCH-LOGICAL-a244t-8d8ae325370cf74de7d776fe568dedeb843a39955ecf9e658dcac8548d5b4b983</cites><orcidid>0000-0003-1764-0023 ; 0000-0002-0207-9643 ; 0000-0001-6406-4992 ; 0000-0002-2546-3306 ; 0000-0001-9390-3740</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://dl.acm.org/doi/pdf/10.1145/3548455$$EPDF$$P50$$Gacm$$H</linktopdf><link.rule.ids>314,776,780,2276,27901,27902,40172,75971</link.rule.ids></links><search><creatorcontrib>Zang, Tianzi</creatorcontrib><creatorcontrib>Zhu, Yanmin</creatorcontrib><creatorcontrib>Liu, Haobing</creatorcontrib><creatorcontrib>Zhang, Ruohan</creatorcontrib><creatorcontrib>Yu, Jiadi</creatorcontrib><title>A Survey on Cross-domain Recommendation: Taxonomies, Methods, and Future Directions</title><title>ACM transactions on information systems</title><addtitle>ACM TOIS</addtitle><description>Traditional recommendation systems are faced with two long-standing obstacles, namely data sparsity and cold-start problems, which promote the emergence and development of Cross-Domain Recommendation (CDR). The core idea of CDR is to leverage information collected from other domains to alleviate the two problems in one domain. Since the early 2010s, many efforts have been engaged for cross-domain recommendation. Recently, with the development of deep learning and neural networks, a large number of methods have emerged. However, there is a limited number of systematic surveys on CDR, especially regarding the latest proposed methods as well as the recommendation scenarios and recommendation tasks they address. In this survey article, we first proposed a two-level taxonomy of cross-domain recommendation that classifies different recommendation scenarios and recommendation tasks. We then introduce and summarize existing cross-domain recommendation approaches under different recommendation scenarios in a structured manner. We also organize datasets commonly used. We conclude this survey by providing several potential research directions about this field.</description><subject>Information systems</subject><subject>Recommender systems</subject><issn>1046-8188</issn><issn>1558-2868</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNo9kEFLxDAQhYMouK7i3VNuXoymTdJOvS3VVWFFcNdzSZMpVmwiSSvuv7dlV0_zhvl4vHmEnCf8OkmkuhFKglTqgMwSpYClkMHhqLnMGCQAx-Qkxg_Oxz3jM7Je0PUQvnFLvaNl8DEy6zvdOvqKxncdOqv71rtbutE_3vmuxXhFn7F_93YU2lm6HPohIL1rA5oJjafkqNGfEc_2c07elveb8pGtXh6eysWK6VTKnoEFjSJVIuemyaXF3OZ51qDKwKLFGqTQoiiUQtMUmCmwRhsYv7OqlnUBYk4ud75myh2wqb5C2-mwrRJeTV1U-y5G8mJHatP9Q3_HX2czWbU</recordid><startdate>20221221</startdate><enddate>20221221</enddate><creator>Zang, Tianzi</creator><creator>Zhu, Yanmin</creator><creator>Liu, Haobing</creator><creator>Zhang, Ruohan</creator><creator>Yu, Jiadi</creator><general>ACM</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0003-1764-0023</orcidid><orcidid>https://orcid.org/0000-0002-0207-9643</orcidid><orcidid>https://orcid.org/0000-0001-6406-4992</orcidid><orcidid>https://orcid.org/0000-0002-2546-3306</orcidid><orcidid>https://orcid.org/0000-0001-9390-3740</orcidid></search><sort><creationdate>20221221</creationdate><title>A Survey on Cross-domain Recommendation: Taxonomies, Methods, and Future Directions</title><author>Zang, Tianzi ; Zhu, Yanmin ; Liu, Haobing ; Zhang, Ruohan ; Yu, Jiadi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a244t-8d8ae325370cf74de7d776fe568dedeb843a39955ecf9e658dcac8548d5b4b983</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Information systems</topic><topic>Recommender systems</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zang, Tianzi</creatorcontrib><creatorcontrib>Zhu, Yanmin</creatorcontrib><creatorcontrib>Liu, Haobing</creatorcontrib><creatorcontrib>Zhang, Ruohan</creatorcontrib><creatorcontrib>Yu, Jiadi</creatorcontrib><collection>CrossRef</collection><jtitle>ACM transactions on information systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zang, Tianzi</au><au>Zhu, Yanmin</au><au>Liu, Haobing</au><au>Zhang, Ruohan</au><au>Yu, Jiadi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Survey on Cross-domain Recommendation: Taxonomies, Methods, and Future Directions</atitle><jtitle>ACM transactions on information systems</jtitle><stitle>ACM TOIS</stitle><date>2022-12-21</date><risdate>2022</risdate><volume>41</volume><issue>2</issue><spage>1</spage><epage>39</epage><pages>1-39</pages><artnum>42</artnum><issn>1046-8188</issn><eissn>1558-2868</eissn><abstract>Traditional recommendation systems are faced with two long-standing obstacles, namely data sparsity and cold-start problems, which promote the emergence and development of Cross-Domain Recommendation (CDR). The core idea of CDR is to leverage information collected from other domains to alleviate the two problems in one domain. Since the early 2010s, many efforts have been engaged for cross-domain recommendation. Recently, with the development of deep learning and neural networks, a large number of methods have emerged. However, there is a limited number of systematic surveys on CDR, especially regarding the latest proposed methods as well as the recommendation scenarios and recommendation tasks they address. In this survey article, we first proposed a two-level taxonomy of cross-domain recommendation that classifies different recommendation scenarios and recommendation tasks. We then introduce and summarize existing cross-domain recommendation approaches under different recommendation scenarios in a structured manner. We also organize datasets commonly used. We conclude this survey by providing several potential research directions about this field.</abstract><cop>New York, NY</cop><pub>ACM</pub><doi>10.1145/3548455</doi><tpages>39</tpages><orcidid>https://orcid.org/0000-0003-1764-0023</orcidid><orcidid>https://orcid.org/0000-0002-0207-9643</orcidid><orcidid>https://orcid.org/0000-0001-6406-4992</orcidid><orcidid>https://orcid.org/0000-0002-2546-3306</orcidid><orcidid>https://orcid.org/0000-0001-9390-3740</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1046-8188
ispartof ACM transactions on information systems, 2022-12, Vol.41 (2), p.1-39, Article 42
issn 1046-8188
1558-2868
language eng
recordid cdi_crossref_primary_10_1145_3548455
source ACM Digital Library Complete
subjects Information systems
Recommender systems
title A Survey on Cross-domain Recommendation: Taxonomies, Methods, and Future Directions
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T00%3A56%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-acm_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Survey%20on%20Cross-domain%20Recommendation:%20Taxonomies,%20Methods,%20and%20Future%20Directions&rft.jtitle=ACM%20transactions%20on%20information%20systems&rft.au=Zang,%20Tianzi&rft.date=2022-12-21&rft.volume=41&rft.issue=2&rft.spage=1&rft.epage=39&rft.pages=1-39&rft.artnum=42&rft.issn=1046-8188&rft.eissn=1558-2868&rft_id=info:doi/10.1145/3548455&rft_dat=%3Cacm_cross%3E3548455%3C/acm_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true