The CME method: Efficient numerical inverse Laplace transformation with Concentrated Matrix Exponential distribution
Numerical inverse Laplace transformation (NILT) is an important tool in the field of system modelling and performance analysis. The recently introduced CME method has many important advantages over the alternative numerical inverse Laplace transformation (NILT) methods. It avoids Gibbs oscillation (...
Gespeichert in:
Veröffentlicht in: | Performance evaluation review 2022-06, Vol.49 (4), p.29-34 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 34 |
---|---|
container_issue | 4 |
container_start_page | 29 |
container_title | Performance evaluation review |
container_volume | 49 |
creator | Almousa, Salah Al-Deen Horv´ath, G´abor Horv´ath, Ill ´es M´esz´aros, Andr´as Telek, Mikl ´os |
description | Numerical inverse Laplace transformation (NILT) is an important tool in the field of system modelling and performance analysis. The recently introduced CME method has many important advantages over the alternative numerical inverse Laplace transformation (NILT) methods. It avoids Gibbs oscillation (i.e., does not generate overshoot and undershoot), preserves the monotonicity of functions, its accuracy is gradually improving with the order, and it is numerically more stable than the alternative methods. In this paper we demonstrate these advantages and introduce our tool which implements the CME method and other popular NILT methods. |
doi_str_mv | 10.1145/3543146.3543155 |
format | Article |
fullrecord | <record><control><sourceid>crossref</sourceid><recordid>TN_cdi_crossref_primary_10_1145_3543146_3543155</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1145_3543146_3543155</sourcerecordid><originalsourceid>FETCH-crossref_primary_10_1145_3543146_35431553</originalsourceid><addsrcrecordid>eNpjYBA3NNAzNDQx1Tc2NTE2NDHTA9OmpiwMnAaGZsa6ppaWlhwMXMXFWQYGhuZGhhacDHwhGakKzr6uCrmpJRn5KTwMrGmJOcWpvFCam0HfzTXE2UM3uSi_uLgoNS2-oCgzN7GoMt7QIB5kVTzUqnioVcak6wAAmOYu5w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>The CME method: Efficient numerical inverse Laplace transformation with Concentrated Matrix Exponential distribution</title><source>ACM Digital Library Complete</source><creator>Almousa, Salah Al-Deen ; Horv´ath, G´abor ; Horv´ath, Ill ´es ; M´esz´aros, Andr´as ; Telek, Mikl ´os</creator><creatorcontrib>Almousa, Salah Al-Deen ; Horv´ath, G´abor ; Horv´ath, Ill ´es ; M´esz´aros, Andr´as ; Telek, Mikl ´os</creatorcontrib><description>Numerical inverse Laplace transformation (NILT) is an important tool in the field of system modelling and performance analysis. The recently introduced CME method has many important advantages over the alternative numerical inverse Laplace transformation (NILT) methods. It avoids Gibbs oscillation (i.e., does not generate overshoot and undershoot), preserves the monotonicity of functions, its accuracy is gradually improving with the order, and it is numerically more stable than the alternative methods. In this paper we demonstrate these advantages and introduce our tool which implements the CME method and other popular NILT methods.</description><identifier>ISSN: 0163-5999</identifier><identifier>DOI: 10.1145/3543146.3543155</identifier><language>eng</language><ispartof>Performance evaluation review, 2022-06, Vol.49 (4), p.29-34</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-crossref_primary_10_1145_3543146_35431553</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27922,27923</link.rule.ids></links><search><creatorcontrib>Almousa, Salah Al-Deen</creatorcontrib><creatorcontrib>Horv´ath, G´abor</creatorcontrib><creatorcontrib>Horv´ath, Ill ´es</creatorcontrib><creatorcontrib>M´esz´aros, Andr´as</creatorcontrib><creatorcontrib>Telek, Mikl ´os</creatorcontrib><title>The CME method: Efficient numerical inverse Laplace transformation with Concentrated Matrix Exponential distribution</title><title>Performance evaluation review</title><description>Numerical inverse Laplace transformation (NILT) is an important tool in the field of system modelling and performance analysis. The recently introduced CME method has many important advantages over the alternative numerical inverse Laplace transformation (NILT) methods. It avoids Gibbs oscillation (i.e., does not generate overshoot and undershoot), preserves the monotonicity of functions, its accuracy is gradually improving with the order, and it is numerically more stable than the alternative methods. In this paper we demonstrate these advantages and introduce our tool which implements the CME method and other popular NILT methods.</description><issn>0163-5999</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNpjYBA3NNAzNDQx1Tc2NTE2NDHTA9OmpiwMnAaGZsa6ppaWlhwMXMXFWQYGhuZGhhacDHwhGakKzr6uCrmpJRn5KTwMrGmJOcWpvFCam0HfzTXE2UM3uSi_uLgoNS2-oCgzN7GoMt7QIB5kVTzUqnioVcak6wAAmOYu5w</recordid><startdate>20220602</startdate><enddate>20220602</enddate><creator>Almousa, Salah Al-Deen</creator><creator>Horv´ath, G´abor</creator><creator>Horv´ath, Ill ´es</creator><creator>M´esz´aros, Andr´as</creator><creator>Telek, Mikl ´os</creator><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20220602</creationdate><title>The CME method</title><author>Almousa, Salah Al-Deen ; Horv´ath, G´abor ; Horv´ath, Ill ´es ; M´esz´aros, Andr´as ; Telek, Mikl ´os</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-crossref_primary_10_1145_3543146_35431553</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><toplevel>online_resources</toplevel><creatorcontrib>Almousa, Salah Al-Deen</creatorcontrib><creatorcontrib>Horv´ath, G´abor</creatorcontrib><creatorcontrib>Horv´ath, Ill ´es</creatorcontrib><creatorcontrib>M´esz´aros, Andr´as</creatorcontrib><creatorcontrib>Telek, Mikl ´os</creatorcontrib><collection>CrossRef</collection><jtitle>Performance evaluation review</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Almousa, Salah Al-Deen</au><au>Horv´ath, G´abor</au><au>Horv´ath, Ill ´es</au><au>M´esz´aros, Andr´as</au><au>Telek, Mikl ´os</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The CME method: Efficient numerical inverse Laplace transformation with Concentrated Matrix Exponential distribution</atitle><jtitle>Performance evaluation review</jtitle><date>2022-06-02</date><risdate>2022</risdate><volume>49</volume><issue>4</issue><spage>29</spage><epage>34</epage><pages>29-34</pages><issn>0163-5999</issn><abstract>Numerical inverse Laplace transformation (NILT) is an important tool in the field of system modelling and performance analysis. The recently introduced CME method has many important advantages over the alternative numerical inverse Laplace transformation (NILT) methods. It avoids Gibbs oscillation (i.e., does not generate overshoot and undershoot), preserves the monotonicity of functions, its accuracy is gradually improving with the order, and it is numerically more stable than the alternative methods. In this paper we demonstrate these advantages and introduce our tool which implements the CME method and other popular NILT methods.</abstract><doi>10.1145/3543146.3543155</doi></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0163-5999 |
ispartof | Performance evaluation review, 2022-06, Vol.49 (4), p.29-34 |
issn | 0163-5999 |
language | eng |
recordid | cdi_crossref_primary_10_1145_3543146_3543155 |
source | ACM Digital Library Complete |
title | The CME method: Efficient numerical inverse Laplace transformation with Concentrated Matrix Exponential distribution |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T04%3A41%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20CME%20method:%20Efficient%20numerical%20inverse%20Laplace%20transformation%20with%20Concentrated%20Matrix%20Exponential%20distribution&rft.jtitle=Performance%20evaluation%20review&rft.au=Almousa,%20Salah%20Al-Deen&rft.date=2022-06-02&rft.volume=49&rft.issue=4&rft.spage=29&rft.epage=34&rft.pages=29-34&rft.issn=0163-5999&rft_id=info:doi/10.1145/3543146.3543155&rft_dat=%3Ccrossref%3E10_1145_3543146_3543155%3C/crossref%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |