The CME method: Efficient numerical inverse Laplace transformation with Concentrated Matrix Exponential distribution

Numerical inverse Laplace transformation (NILT) is an important tool in the field of system modelling and performance analysis. The recently introduced CME method has many important advantages over the alternative numerical inverse Laplace transformation (NILT) methods. It avoids Gibbs oscillation (...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Performance evaluation review 2022-06, Vol.49 (4), p.29-34
Hauptverfasser: Almousa, Salah Al-Deen, Horv´ath, G´abor, Horv´ath, Ill ´es, M´esz´aros, Andr´as, Telek, Mikl ´os
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 34
container_issue 4
container_start_page 29
container_title Performance evaluation review
container_volume 49
creator Almousa, Salah Al-Deen
Horv´ath, G´abor
Horv´ath, Ill ´es
M´esz´aros, Andr´as
Telek, Mikl ´os
description Numerical inverse Laplace transformation (NILT) is an important tool in the field of system modelling and performance analysis. The recently introduced CME method has many important advantages over the alternative numerical inverse Laplace transformation (NILT) methods. It avoids Gibbs oscillation (i.e., does not generate overshoot and undershoot), preserves the monotonicity of functions, its accuracy is gradually improving with the order, and it is numerically more stable than the alternative methods. In this paper we demonstrate these advantages and introduce our tool which implements the CME method and other popular NILT methods.
doi_str_mv 10.1145/3543146.3543155
format Article
fullrecord <record><control><sourceid>crossref</sourceid><recordid>TN_cdi_crossref_primary_10_1145_3543146_3543155</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1145_3543146_3543155</sourcerecordid><originalsourceid>FETCH-crossref_primary_10_1145_3543146_35431553</originalsourceid><addsrcrecordid>eNpjYBA3NNAzNDQx1Tc2NTE2NDHTA9OmpiwMnAaGZsa6ppaWlhwMXMXFWQYGhuZGhhacDHwhGakKzr6uCrmpJRn5KTwMrGmJOcWpvFCam0HfzTXE2UM3uSi_uLgoNS2-oCgzN7GoMt7QIB5kVTzUqnioVcak6wAAmOYu5w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>The CME method: Efficient numerical inverse Laplace transformation with Concentrated Matrix Exponential distribution</title><source>ACM Digital Library Complete</source><creator>Almousa, Salah Al-Deen ; Horv´ath, G´abor ; Horv´ath, Ill ´es ; M´esz´aros, Andr´as ; Telek, Mikl ´os</creator><creatorcontrib>Almousa, Salah Al-Deen ; Horv´ath, G´abor ; Horv´ath, Ill ´es ; M´esz´aros, Andr´as ; Telek, Mikl ´os</creatorcontrib><description>Numerical inverse Laplace transformation (NILT) is an important tool in the field of system modelling and performance analysis. The recently introduced CME method has many important advantages over the alternative numerical inverse Laplace transformation (NILT) methods. It avoids Gibbs oscillation (i.e., does not generate overshoot and undershoot), preserves the monotonicity of functions, its accuracy is gradually improving with the order, and it is numerically more stable than the alternative methods. In this paper we demonstrate these advantages and introduce our tool which implements the CME method and other popular NILT methods.</description><identifier>ISSN: 0163-5999</identifier><identifier>DOI: 10.1145/3543146.3543155</identifier><language>eng</language><ispartof>Performance evaluation review, 2022-06, Vol.49 (4), p.29-34</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-crossref_primary_10_1145_3543146_35431553</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27922,27923</link.rule.ids></links><search><creatorcontrib>Almousa, Salah Al-Deen</creatorcontrib><creatorcontrib>Horv´ath, G´abor</creatorcontrib><creatorcontrib>Horv´ath, Ill ´es</creatorcontrib><creatorcontrib>M´esz´aros, Andr´as</creatorcontrib><creatorcontrib>Telek, Mikl ´os</creatorcontrib><title>The CME method: Efficient numerical inverse Laplace transformation with Concentrated Matrix Exponential distribution</title><title>Performance evaluation review</title><description>Numerical inverse Laplace transformation (NILT) is an important tool in the field of system modelling and performance analysis. The recently introduced CME method has many important advantages over the alternative numerical inverse Laplace transformation (NILT) methods. It avoids Gibbs oscillation (i.e., does not generate overshoot and undershoot), preserves the monotonicity of functions, its accuracy is gradually improving with the order, and it is numerically more stable than the alternative methods. In this paper we demonstrate these advantages and introduce our tool which implements the CME method and other popular NILT methods.</description><issn>0163-5999</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNpjYBA3NNAzNDQx1Tc2NTE2NDHTA9OmpiwMnAaGZsa6ppaWlhwMXMXFWQYGhuZGhhacDHwhGakKzr6uCrmpJRn5KTwMrGmJOcWpvFCam0HfzTXE2UM3uSi_uLgoNS2-oCgzN7GoMt7QIB5kVTzUqnioVcak6wAAmOYu5w</recordid><startdate>20220602</startdate><enddate>20220602</enddate><creator>Almousa, Salah Al-Deen</creator><creator>Horv´ath, G´abor</creator><creator>Horv´ath, Ill ´es</creator><creator>M´esz´aros, Andr´as</creator><creator>Telek, Mikl ´os</creator><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20220602</creationdate><title>The CME method</title><author>Almousa, Salah Al-Deen ; Horv´ath, G´abor ; Horv´ath, Ill ´es ; M´esz´aros, Andr´as ; Telek, Mikl ´os</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-crossref_primary_10_1145_3543146_35431553</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><toplevel>online_resources</toplevel><creatorcontrib>Almousa, Salah Al-Deen</creatorcontrib><creatorcontrib>Horv´ath, G´abor</creatorcontrib><creatorcontrib>Horv´ath, Ill ´es</creatorcontrib><creatorcontrib>M´esz´aros, Andr´as</creatorcontrib><creatorcontrib>Telek, Mikl ´os</creatorcontrib><collection>CrossRef</collection><jtitle>Performance evaluation review</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Almousa, Salah Al-Deen</au><au>Horv´ath, G´abor</au><au>Horv´ath, Ill ´es</au><au>M´esz´aros, Andr´as</au><au>Telek, Mikl ´os</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The CME method: Efficient numerical inverse Laplace transformation with Concentrated Matrix Exponential distribution</atitle><jtitle>Performance evaluation review</jtitle><date>2022-06-02</date><risdate>2022</risdate><volume>49</volume><issue>4</issue><spage>29</spage><epage>34</epage><pages>29-34</pages><issn>0163-5999</issn><abstract>Numerical inverse Laplace transformation (NILT) is an important tool in the field of system modelling and performance analysis. The recently introduced CME method has many important advantages over the alternative numerical inverse Laplace transformation (NILT) methods. It avoids Gibbs oscillation (i.e., does not generate overshoot and undershoot), preserves the monotonicity of functions, its accuracy is gradually improving with the order, and it is numerically more stable than the alternative methods. In this paper we demonstrate these advantages and introduce our tool which implements the CME method and other popular NILT methods.</abstract><doi>10.1145/3543146.3543155</doi></addata></record>
fulltext fulltext
identifier ISSN: 0163-5999
ispartof Performance evaluation review, 2022-06, Vol.49 (4), p.29-34
issn 0163-5999
language eng
recordid cdi_crossref_primary_10_1145_3543146_3543155
source ACM Digital Library Complete
title The CME method: Efficient numerical inverse Laplace transformation with Concentrated Matrix Exponential distribution
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T04%3A41%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20CME%20method:%20Efficient%20numerical%20inverse%20Laplace%20transformation%20with%20Concentrated%20Matrix%20Exponential%20distribution&rft.jtitle=Performance%20evaluation%20review&rft.au=Almousa,%20Salah%20Al-Deen&rft.date=2022-06-02&rft.volume=49&rft.issue=4&rft.spage=29&rft.epage=34&rft.pages=29-34&rft.issn=0163-5999&rft_id=info:doi/10.1145/3543146.3543155&rft_dat=%3Ccrossref%3E10_1145_3543146_3543155%3C/crossref%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true