Adaptive optimization in the Jalapeño JVM

Future high-performance virtual machines will improve performance through sophisticated online feedback-directed optimizations. this paper presents the architecture of the Jalapeño Adaptive Optimization System, a system to support leading-edge virtual machine technology and enable ongoing research o...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:SIGPLAN notices 2000-10, Vol.35 (10), p.47-65
Hauptverfasser: Arnold, Matthew, Fink, Stephen, Grove, David, Hind, Michael, Sweeney, Peter F.
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 65
container_issue 10
container_start_page 47
container_title SIGPLAN notices
container_volume 35
creator Arnold, Matthew
Fink, Stephen
Grove, David
Hind, Michael
Sweeney, Peter F.
description Future high-performance virtual machines will improve performance through sophisticated online feedback-directed optimizations. this paper presents the architecture of the Jalapeño Adaptive Optimization System, a system to support leading-edge virtual machine technology and enable ongoing research on online feedback-directed optimizations. We describe the extensible system architecture, based on a federation of threads with asynchronous communication. We present an implementation of the general architecture that supports adaptive multi-level optimization based purely on statistical sampling. We empirically demonstrate that this profiling technique has low overhead and can improve startup and steady-state performance, even without the presence of online feedback-directed optimizations. The paper also describes and evaluates an online feedback-directed inlining optimization based on statistical edge sampling. The system is written completely in Java, applying the described techniques not only to application code and standard libraries, but also to the virtual machine itself.
doi_str_mv 10.1145/354222.353175
format Article
fullrecord <record><control><sourceid>crossref</sourceid><recordid>TN_cdi_crossref_primary_10_1145_354222_353175</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1145_354222_353175</sourcerecordid><originalsourceid>FETCH-LOGICAL-c410t-1e12878d93ba37dff3932e333b618b24bd2fb84b13a1b93886ad3fdf823fec53</originalsourceid><addsrcrecordid>eNotz0FLwzAYgOEgCtbp0XvOQub35Uva9DiGOsdkl7FrSJoEK9tamiLov_I3-MdU6um9vfAwdoswR1T6nrSSUs5JE1b6jBWotRGIJZyzAqiUAknBJbvK-Q0ACKQp2N0iuH5s3yPvfnNsP93Ydifenvj4GvnaHVwfv786vt6_XLOL5A453vx3xnaPD7vlSmy2T8_LxUY0CmEUGFGayoSavKMqpEQ1yUhEvkTjpfJBJm-UR3LoazKmdIFSSEZSio2mGRPTthm6nIeYbD-0Rzd8WAT757ST005O-gFiBUR5</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Adaptive optimization in the Jalapeño JVM</title><source>ACM Digital Library</source><creator>Arnold, Matthew ; Fink, Stephen ; Grove, David ; Hind, Michael ; Sweeney, Peter F.</creator><creatorcontrib>Arnold, Matthew ; Fink, Stephen ; Grove, David ; Hind, Michael ; Sweeney, Peter F.</creatorcontrib><description>Future high-performance virtual machines will improve performance through sophisticated online feedback-directed optimizations. this paper presents the architecture of the Jalapeño Adaptive Optimization System, a system to support leading-edge virtual machine technology and enable ongoing research on online feedback-directed optimizations. We describe the extensible system architecture, based on a federation of threads with asynchronous communication. We present an implementation of the general architecture that supports adaptive multi-level optimization based purely on statistical sampling. We empirically demonstrate that this profiling technique has low overhead and can improve startup and steady-state performance, even without the presence of online feedback-directed optimizations. The paper also describes and evaluates an online feedback-directed inlining optimization based on statistical edge sampling. The system is written completely in Java, applying the described techniques not only to application code and standard libraries, but also to the virtual machine itself.</description><identifier>ISSN: 0362-1340</identifier><identifier>EISSN: 1558-1160</identifier><identifier>DOI: 10.1145/354222.353175</identifier><language>eng</language><ispartof>SIGPLAN notices, 2000-10, Vol.35 (10), p.47-65</ispartof><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c410t-1e12878d93ba37dff3932e333b618b24bd2fb84b13a1b93886ad3fdf823fec53</citedby><cites>FETCH-LOGICAL-c410t-1e12878d93ba37dff3932e333b618b24bd2fb84b13a1b93886ad3fdf823fec53</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Arnold, Matthew</creatorcontrib><creatorcontrib>Fink, Stephen</creatorcontrib><creatorcontrib>Grove, David</creatorcontrib><creatorcontrib>Hind, Michael</creatorcontrib><creatorcontrib>Sweeney, Peter F.</creatorcontrib><title>Adaptive optimization in the Jalapeño JVM</title><title>SIGPLAN notices</title><description>Future high-performance virtual machines will improve performance through sophisticated online feedback-directed optimizations. this paper presents the architecture of the Jalapeño Adaptive Optimization System, a system to support leading-edge virtual machine technology and enable ongoing research on online feedback-directed optimizations. We describe the extensible system architecture, based on a federation of threads with asynchronous communication. We present an implementation of the general architecture that supports adaptive multi-level optimization based purely on statistical sampling. We empirically demonstrate that this profiling technique has low overhead and can improve startup and steady-state performance, even without the presence of online feedback-directed optimizations. The paper also describes and evaluates an online feedback-directed inlining optimization based on statistical edge sampling. The system is written completely in Java, applying the described techniques not only to application code and standard libraries, but also to the virtual machine itself.</description><issn>0362-1340</issn><issn>1558-1160</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2000</creationdate><recordtype>article</recordtype><recordid>eNotz0FLwzAYgOEgCtbp0XvOQub35Uva9DiGOsdkl7FrSJoEK9tamiLov_I3-MdU6um9vfAwdoswR1T6nrSSUs5JE1b6jBWotRGIJZyzAqiUAknBJbvK-Q0ACKQp2N0iuH5s3yPvfnNsP93Ydifenvj4GvnaHVwfv786vt6_XLOL5A453vx3xnaPD7vlSmy2T8_LxUY0CmEUGFGayoSavKMqpEQ1yUhEvkTjpfJBJm-UR3LoazKmdIFSSEZSio2mGRPTthm6nIeYbD-0Rzd8WAT757ST005O-gFiBUR5</recordid><startdate>20001001</startdate><enddate>20001001</enddate><creator>Arnold, Matthew</creator><creator>Fink, Stephen</creator><creator>Grove, David</creator><creator>Hind, Michael</creator><creator>Sweeney, Peter F.</creator><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20001001</creationdate><title>Adaptive optimization in the Jalapeño JVM</title><author>Arnold, Matthew ; Fink, Stephen ; Grove, David ; Hind, Michael ; Sweeney, Peter F.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c410t-1e12878d93ba37dff3932e333b618b24bd2fb84b13a1b93886ad3fdf823fec53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2000</creationdate><toplevel>online_resources</toplevel><creatorcontrib>Arnold, Matthew</creatorcontrib><creatorcontrib>Fink, Stephen</creatorcontrib><creatorcontrib>Grove, David</creatorcontrib><creatorcontrib>Hind, Michael</creatorcontrib><creatorcontrib>Sweeney, Peter F.</creatorcontrib><collection>CrossRef</collection><jtitle>SIGPLAN notices</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Arnold, Matthew</au><au>Fink, Stephen</au><au>Grove, David</au><au>Hind, Michael</au><au>Sweeney, Peter F.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Adaptive optimization in the Jalapeño JVM</atitle><jtitle>SIGPLAN notices</jtitle><date>2000-10-01</date><risdate>2000</risdate><volume>35</volume><issue>10</issue><spage>47</spage><epage>65</epage><pages>47-65</pages><issn>0362-1340</issn><eissn>1558-1160</eissn><abstract>Future high-performance virtual machines will improve performance through sophisticated online feedback-directed optimizations. this paper presents the architecture of the Jalapeño Adaptive Optimization System, a system to support leading-edge virtual machine technology and enable ongoing research on online feedback-directed optimizations. We describe the extensible system architecture, based on a federation of threads with asynchronous communication. We present an implementation of the general architecture that supports adaptive multi-level optimization based purely on statistical sampling. We empirically demonstrate that this profiling technique has low overhead and can improve startup and steady-state performance, even without the presence of online feedback-directed optimizations. The paper also describes and evaluates an online feedback-directed inlining optimization based on statistical edge sampling. The system is written completely in Java, applying the described techniques not only to application code and standard libraries, but also to the virtual machine itself.</abstract><doi>10.1145/354222.353175</doi><tpages>19</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0362-1340
ispartof SIGPLAN notices, 2000-10, Vol.35 (10), p.47-65
issn 0362-1340
1558-1160
language eng
recordid cdi_crossref_primary_10_1145_354222_353175
source ACM Digital Library
title Adaptive optimization in the Jalapeño JVM
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T17%3A29%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Adaptive%20optimization%20in%20the%20Jalape%C3%B1o%20JVM&rft.jtitle=SIGPLAN%20notices&rft.au=Arnold,%20Matthew&rft.date=2000-10-01&rft.volume=35&rft.issue=10&rft.spage=47&rft.epage=65&rft.pages=47-65&rft.issn=0362-1340&rft.eissn=1558-1160&rft_id=info:doi/10.1145/354222.353175&rft_dat=%3Ccrossref%3E10_1145_354222_353175%3C/crossref%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true