Multi-Concept Representation Learning for Knowledge Graph Completion

Knowledge Graph Completion (KGC) aims at inferring missing entities or relations by embedding them in a low-dimensional space. However, most existing KGC methods generally fail to handle the complex concepts hidden in triplets, so the learned embeddings of entities or relations may deviate from the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACM transactions on knowledge discovery from data 2023-02, Vol.17 (1), p.1-19, Article 11
Hauptverfasser: Wang, Jiapu, Wang, Boyue, Gao, Junbin, Hu, Yongli, Yin, Baocai
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 19
container_issue 1
container_start_page 1
container_title ACM transactions on knowledge discovery from data
container_volume 17
creator Wang, Jiapu
Wang, Boyue
Gao, Junbin
Hu, Yongli
Yin, Baocai
description Knowledge Graph Completion (KGC) aims at inferring missing entities or relations by embedding them in a low-dimensional space. However, most existing KGC methods generally fail to handle the complex concepts hidden in triplets, so the learned embeddings of entities or relations may deviate from the true situation. In this article, we propose a novel Multi-concept Representation Learning (McRL) method for the KGC task, which mainly consists of a multi-concept representation module, a deep residual attention module, and an interaction embedding module. Specifically, instead of the single-feature representation, the multi-concept representation module projects each entity or relation to multiple vectors to capture the complex conceptual information hidden in them. The deep residual attention module simultaneously explores the inter- and intra-connection between entities and relations to enhance the entity and relation embeddings corresponding to the current contextual situation. Moreover, the interaction embedding module further weakens the noise and ambiguity to obtain the optimal and robust embeddings. We conduct the link prediction experiment to evaluate the proposed method on several standard datasets, and experimental results show that the proposed method outperforms existing state-of-the-art KGC methods.
doi_str_mv 10.1145/3533017
format Article
fullrecord <record><control><sourceid>acm_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1145_3533017</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3533017</sourcerecordid><originalsourceid>FETCH-LOGICAL-a244t-14bb0796419b896c5173c7ad946ef1b8c2da11c8e3d0571db540b869553f38f33</originalsourceid><addsrcrecordid>eNo9j89LwzAcxYMoOKd495Sbp2q-zc8epbopVgRR8FaSNJmVLilJRfzvdWzz9B68Dw8-CJ0DuQJg_JpySgnIAzQDzkXBZPl-uO9CwTE6yfmTEM4Byhm6ffoapr6oY7BunPCLG5PLLkx66mPAjdMp9GGFfUz4McTvwXUrh5dJjx-4jutxcBvuFB15PWR3tss5elvcvdb3RfO8fKhvmkKXjE0FMGOIrASDyqhKWA6SWqm7ignnwShbdhrAKkc7wiV0hjNilKg4p54qT-kcXW5_bYo5J-fbMfVrnX5aIO1Gvt3J_5EXW1Lb9T-0H38BhqNThg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Multi-Concept Representation Learning for Knowledge Graph Completion</title><source>ACM Digital Library Complete</source><creator>Wang, Jiapu ; Wang, Boyue ; Gao, Junbin ; Hu, Yongli ; Yin, Baocai</creator><creatorcontrib>Wang, Jiapu ; Wang, Boyue ; Gao, Junbin ; Hu, Yongli ; Yin, Baocai</creatorcontrib><description>Knowledge Graph Completion (KGC) aims at inferring missing entities or relations by embedding them in a low-dimensional space. However, most existing KGC methods generally fail to handle the complex concepts hidden in triplets, so the learned embeddings of entities or relations may deviate from the true situation. In this article, we propose a novel Multi-concept Representation Learning (McRL) method for the KGC task, which mainly consists of a multi-concept representation module, a deep residual attention module, and an interaction embedding module. Specifically, instead of the single-feature representation, the multi-concept representation module projects each entity or relation to multiple vectors to capture the complex conceptual information hidden in them. The deep residual attention module simultaneously explores the inter- and intra-connection between entities and relations to enhance the entity and relation embeddings corresponding to the current contextual situation. Moreover, the interaction embedding module further weakens the noise and ambiguity to obtain the optimal and robust embeddings. We conduct the link prediction experiment to evaluate the proposed method on several standard datasets, and experimental results show that the proposed method outperforms existing state-of-the-art KGC methods.</description><identifier>ISSN: 1556-4681</identifier><identifier>EISSN: 1556-472X</identifier><identifier>DOI: 10.1145/3533017</identifier><language>eng</language><publisher>New York, NY: ACM</publisher><subject>Computer systems organization ; Embedded systems ; Network reliability ; Networks ; Redundancy ; Robotics</subject><ispartof>ACM transactions on knowledge discovery from data, 2023-02, Vol.17 (1), p.1-19, Article 11</ispartof><rights>Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a244t-14bb0796419b896c5173c7ad946ef1b8c2da11c8e3d0571db540b869553f38f33</citedby><cites>FETCH-LOGICAL-a244t-14bb0796419b896c5173c7ad946ef1b8c2da11c8e3d0571db540b869553f38f33</cites><orcidid>0000-0001-9803-0256 ; 0000-0003-3121-1823 ; 0000-0003-0440-438X ; 0000-0002-2677-8342 ; 0000-0001-7639-5289</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://dl.acm.org/doi/pdf/10.1145/3533017$$EPDF$$P50$$Gacm$$H</linktopdf><link.rule.ids>314,777,781,2277,27906,27907,40178,75978</link.rule.ids></links><search><creatorcontrib>Wang, Jiapu</creatorcontrib><creatorcontrib>Wang, Boyue</creatorcontrib><creatorcontrib>Gao, Junbin</creatorcontrib><creatorcontrib>Hu, Yongli</creatorcontrib><creatorcontrib>Yin, Baocai</creatorcontrib><title>Multi-Concept Representation Learning for Knowledge Graph Completion</title><title>ACM transactions on knowledge discovery from data</title><addtitle>ACM TKDD</addtitle><description>Knowledge Graph Completion (KGC) aims at inferring missing entities or relations by embedding them in a low-dimensional space. However, most existing KGC methods generally fail to handle the complex concepts hidden in triplets, so the learned embeddings of entities or relations may deviate from the true situation. In this article, we propose a novel Multi-concept Representation Learning (McRL) method for the KGC task, which mainly consists of a multi-concept representation module, a deep residual attention module, and an interaction embedding module. Specifically, instead of the single-feature representation, the multi-concept representation module projects each entity or relation to multiple vectors to capture the complex conceptual information hidden in them. The deep residual attention module simultaneously explores the inter- and intra-connection between entities and relations to enhance the entity and relation embeddings corresponding to the current contextual situation. Moreover, the interaction embedding module further weakens the noise and ambiguity to obtain the optimal and robust embeddings. We conduct the link prediction experiment to evaluate the proposed method on several standard datasets, and experimental results show that the proposed method outperforms existing state-of-the-art KGC methods.</description><subject>Computer systems organization</subject><subject>Embedded systems</subject><subject>Network reliability</subject><subject>Networks</subject><subject>Redundancy</subject><subject>Robotics</subject><issn>1556-4681</issn><issn>1556-472X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNo9j89LwzAcxYMoOKd495Sbp2q-zc8epbopVgRR8FaSNJmVLilJRfzvdWzz9B68Dw8-CJ0DuQJg_JpySgnIAzQDzkXBZPl-uO9CwTE6yfmTEM4Byhm6ffoapr6oY7BunPCLG5PLLkx66mPAjdMp9GGFfUz4McTvwXUrh5dJjx-4jutxcBvuFB15PWR3tss5elvcvdb3RfO8fKhvmkKXjE0FMGOIrASDyqhKWA6SWqm7ignnwShbdhrAKkc7wiV0hjNilKg4p54qT-kcXW5_bYo5J-fbMfVrnX5aIO1Gvt3J_5EXW1Lb9T-0H38BhqNThg</recordid><startdate>20230220</startdate><enddate>20230220</enddate><creator>Wang, Jiapu</creator><creator>Wang, Boyue</creator><creator>Gao, Junbin</creator><creator>Hu, Yongli</creator><creator>Yin, Baocai</creator><general>ACM</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0001-9803-0256</orcidid><orcidid>https://orcid.org/0000-0003-3121-1823</orcidid><orcidid>https://orcid.org/0000-0003-0440-438X</orcidid><orcidid>https://orcid.org/0000-0002-2677-8342</orcidid><orcidid>https://orcid.org/0000-0001-7639-5289</orcidid></search><sort><creationdate>20230220</creationdate><title>Multi-Concept Representation Learning for Knowledge Graph Completion</title><author>Wang, Jiapu ; Wang, Boyue ; Gao, Junbin ; Hu, Yongli ; Yin, Baocai</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a244t-14bb0796419b896c5173c7ad946ef1b8c2da11c8e3d0571db540b869553f38f33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Computer systems organization</topic><topic>Embedded systems</topic><topic>Network reliability</topic><topic>Networks</topic><topic>Redundancy</topic><topic>Robotics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Jiapu</creatorcontrib><creatorcontrib>Wang, Boyue</creatorcontrib><creatorcontrib>Gao, Junbin</creatorcontrib><creatorcontrib>Hu, Yongli</creatorcontrib><creatorcontrib>Yin, Baocai</creatorcontrib><collection>CrossRef</collection><jtitle>ACM transactions on knowledge discovery from data</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Jiapu</au><au>Wang, Boyue</au><au>Gao, Junbin</au><au>Hu, Yongli</au><au>Yin, Baocai</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Multi-Concept Representation Learning for Knowledge Graph Completion</atitle><jtitle>ACM transactions on knowledge discovery from data</jtitle><stitle>ACM TKDD</stitle><date>2023-02-20</date><risdate>2023</risdate><volume>17</volume><issue>1</issue><spage>1</spage><epage>19</epage><pages>1-19</pages><artnum>11</artnum><issn>1556-4681</issn><eissn>1556-472X</eissn><abstract>Knowledge Graph Completion (KGC) aims at inferring missing entities or relations by embedding them in a low-dimensional space. However, most existing KGC methods generally fail to handle the complex concepts hidden in triplets, so the learned embeddings of entities or relations may deviate from the true situation. In this article, we propose a novel Multi-concept Representation Learning (McRL) method for the KGC task, which mainly consists of a multi-concept representation module, a deep residual attention module, and an interaction embedding module. Specifically, instead of the single-feature representation, the multi-concept representation module projects each entity or relation to multiple vectors to capture the complex conceptual information hidden in them. The deep residual attention module simultaneously explores the inter- and intra-connection between entities and relations to enhance the entity and relation embeddings corresponding to the current contextual situation. Moreover, the interaction embedding module further weakens the noise and ambiguity to obtain the optimal and robust embeddings. We conduct the link prediction experiment to evaluate the proposed method on several standard datasets, and experimental results show that the proposed method outperforms existing state-of-the-art KGC methods.</abstract><cop>New York, NY</cop><pub>ACM</pub><doi>10.1145/3533017</doi><tpages>19</tpages><orcidid>https://orcid.org/0000-0001-9803-0256</orcidid><orcidid>https://orcid.org/0000-0003-3121-1823</orcidid><orcidid>https://orcid.org/0000-0003-0440-438X</orcidid><orcidid>https://orcid.org/0000-0002-2677-8342</orcidid><orcidid>https://orcid.org/0000-0001-7639-5289</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1556-4681
ispartof ACM transactions on knowledge discovery from data, 2023-02, Vol.17 (1), p.1-19, Article 11
issn 1556-4681
1556-472X
language eng
recordid cdi_crossref_primary_10_1145_3533017
source ACM Digital Library Complete
subjects Computer systems organization
Embedded systems
Network reliability
Networks
Redundancy
Robotics
title Multi-Concept Representation Learning for Knowledge Graph Completion
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T10%3A28%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-acm_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Multi-Concept%20Representation%20Learning%20for%20Knowledge%20Graph%20Completion&rft.jtitle=ACM%20transactions%20on%20knowledge%20discovery%20from%20data&rft.au=Wang,%20Jiapu&rft.date=2023-02-20&rft.volume=17&rft.issue=1&rft.spage=1&rft.epage=19&rft.pages=1-19&rft.artnum=11&rft.issn=1556-4681&rft.eissn=1556-472X&rft_id=info:doi/10.1145/3533017&rft_dat=%3Cacm_cross%3E3533017%3C/acm_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true