Efficiency-aware multiple importance sampling for bidirectional rendering algorithms

Multiple importance sampling (MIS) is an indispensable tool in light-transport simulation. It enables robust Monte Carlo integration by combining samples from several techniques. However, it is well understood that such a combination is not always more efficient than using a single sampling techniqu...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACM transactions on graphics 2022-07, Vol.41 (4), p.1-12, Article 80
Hauptverfasser: Grittmann, Pascal, Yazici, Ömercan, Georgiev, Iliyan, Slusallek, Philipp
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 12
container_issue 4
container_start_page 1
container_title ACM transactions on graphics
container_volume 41
creator Grittmann, Pascal
Yazici, Ömercan
Georgiev, Iliyan
Slusallek, Philipp
description Multiple importance sampling (MIS) is an indispensable tool in light-transport simulation. It enables robust Monte Carlo integration by combining samples from several techniques. However, it is well understood that such a combination is not always more efficient than using a single sampling technique. Thus a major criticism of complex combined estimators, such as bidirectional path tracing, is that they can be significantly less efficient on common scenes than simpler algorithms like forward path tracing. We propose a general method to improve MIS efficiency: By cheaply estimating the efficiencies of various technique and sample-count combinations, we can pick the best one. The key ingredient is a numerically robust and efficient scheme that uses the samples of one MIS combination to compute the efficiency of multiple other combinations. For example, we can run forward path tracing and use its samples to decide which subset of VCM to enable, and at what sampling rates. The sample count for each technique can be controlled per-pixel or globally. Applied to VCM, our approach enables robust rendering of complex scenes with caustics, without compromising efficiency on simpler scenes.
doi_str_mv 10.1145/3528223.3530126
format Article
fullrecord <record><control><sourceid>acm_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1145_3528223_3530126</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3530126</sourcerecordid><originalsourceid>FETCH-LOGICAL-a301t-509e093a6dd3fc069b712f1c30e4e5727586ff61e2e6446864f52749eeb2ea663</originalsourceid><addsrcrecordid>eNo9kE1LxDAURYMoWEfXgqv-gcy8JE3SLmUYHWHAzbguafoyRvpFUpH597ZMdfUW593L5RDyyGDNWCY3QvKcc7EWUgDj6ookTEpNtVD5NUlAC6AwkVtyF-MXAKgsUwk57pzz1mNnz9T8mIBp-92Mfmgw9e3Qh9F0FtNo2qHx3Sl1fUgrX_uAdvR9Z5o0YFdjmJlpTn3w42cb78mNM03Eh-WuyMfL7rjd08P769v2-UDNNGSkEgqEQhhV18JZUEWlGXfMCsAMpeZa5so5xZDjPDZXmZNcZwVixdEoJVZkc-m1oY8xoCuH4FsTziWDcpZSLlLKRcqUeLokjG3_n__gL4fgXcQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Efficiency-aware multiple importance sampling for bidirectional rendering algorithms</title><source>ACM Digital Library Complete</source><creator>Grittmann, Pascal ; Yazici, Ömercan ; Georgiev, Iliyan ; Slusallek, Philipp</creator><creatorcontrib>Grittmann, Pascal ; Yazici, Ömercan ; Georgiev, Iliyan ; Slusallek, Philipp</creatorcontrib><description>Multiple importance sampling (MIS) is an indispensable tool in light-transport simulation. It enables robust Monte Carlo integration by combining samples from several techniques. However, it is well understood that such a combination is not always more efficient than using a single sampling technique. Thus a major criticism of complex combined estimators, such as bidirectional path tracing, is that they can be significantly less efficient on common scenes than simpler algorithms like forward path tracing. We propose a general method to improve MIS efficiency: By cheaply estimating the efficiencies of various technique and sample-count combinations, we can pick the best one. The key ingredient is a numerically robust and efficient scheme that uses the samples of one MIS combination to compute the efficiency of multiple other combinations. For example, we can run forward path tracing and use its samples to decide which subset of VCM to enable, and at what sampling rates. The sample count for each technique can be controlled per-pixel or globally. Applied to VCM, our approach enables robust rendering of complex scenes with caustics, without compromising efficiency on simpler scenes.</description><identifier>ISSN: 0730-0301</identifier><identifier>EISSN: 1557-7368</identifier><identifier>DOI: 10.1145/3528223.3530126</identifier><language>eng</language><publisher>New York, NY, USA: ACM</publisher><subject>Computer graphics ; Computing methodologies ; Ray tracing ; Rendering</subject><ispartof>ACM transactions on graphics, 2022-07, Vol.41 (4), p.1-12, Article 80</ispartof><rights>Owner/Author</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a301t-509e093a6dd3fc069b712f1c30e4e5727586ff61e2e6446864f52749eeb2ea663</citedby><cites>FETCH-LOGICAL-a301t-509e093a6dd3fc069b712f1c30e4e5727586ff61e2e6446864f52749eeb2ea663</cites><orcidid>0000-0002-9655-2138 ; 0000-0002-5325-3744 ; 0000-0003-0306-757X ; 0000-0002-2189-2429</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://dl.acm.org/doi/pdf/10.1145/3528223.3530126$$EPDF$$P50$$Gacm$$Hfree_for_read</linktopdf><link.rule.ids>314,780,784,2282,27924,27925,40196,76228</link.rule.ids></links><search><creatorcontrib>Grittmann, Pascal</creatorcontrib><creatorcontrib>Yazici, Ömercan</creatorcontrib><creatorcontrib>Georgiev, Iliyan</creatorcontrib><creatorcontrib>Slusallek, Philipp</creatorcontrib><title>Efficiency-aware multiple importance sampling for bidirectional rendering algorithms</title><title>ACM transactions on graphics</title><addtitle>ACM TOG</addtitle><description>Multiple importance sampling (MIS) is an indispensable tool in light-transport simulation. It enables robust Monte Carlo integration by combining samples from several techniques. However, it is well understood that such a combination is not always more efficient than using a single sampling technique. Thus a major criticism of complex combined estimators, such as bidirectional path tracing, is that they can be significantly less efficient on common scenes than simpler algorithms like forward path tracing. We propose a general method to improve MIS efficiency: By cheaply estimating the efficiencies of various technique and sample-count combinations, we can pick the best one. The key ingredient is a numerically robust and efficient scheme that uses the samples of one MIS combination to compute the efficiency of multiple other combinations. For example, we can run forward path tracing and use its samples to decide which subset of VCM to enable, and at what sampling rates. The sample count for each technique can be controlled per-pixel or globally. Applied to VCM, our approach enables robust rendering of complex scenes with caustics, without compromising efficiency on simpler scenes.</description><subject>Computer graphics</subject><subject>Computing methodologies</subject><subject>Ray tracing</subject><subject>Rendering</subject><issn>0730-0301</issn><issn>1557-7368</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNo9kE1LxDAURYMoWEfXgqv-gcy8JE3SLmUYHWHAzbguafoyRvpFUpH597ZMdfUW593L5RDyyGDNWCY3QvKcc7EWUgDj6ookTEpNtVD5NUlAC6AwkVtyF-MXAKgsUwk57pzz1mNnz9T8mIBp-92Mfmgw9e3Qh9F0FtNo2qHx3Sl1fUgrX_uAdvR9Z5o0YFdjmJlpTn3w42cb78mNM03Eh-WuyMfL7rjd08P769v2-UDNNGSkEgqEQhhV18JZUEWlGXfMCsAMpeZa5so5xZDjPDZXmZNcZwVixdEoJVZkc-m1oY8xoCuH4FsTziWDcpZSLlLKRcqUeLokjG3_n__gL4fgXcQ</recordid><startdate>20220722</startdate><enddate>20220722</enddate><creator>Grittmann, Pascal</creator><creator>Yazici, Ömercan</creator><creator>Georgiev, Iliyan</creator><creator>Slusallek, Philipp</creator><general>ACM</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-9655-2138</orcidid><orcidid>https://orcid.org/0000-0002-5325-3744</orcidid><orcidid>https://orcid.org/0000-0003-0306-757X</orcidid><orcidid>https://orcid.org/0000-0002-2189-2429</orcidid></search><sort><creationdate>20220722</creationdate><title>Efficiency-aware multiple importance sampling for bidirectional rendering algorithms</title><author>Grittmann, Pascal ; Yazici, Ömercan ; Georgiev, Iliyan ; Slusallek, Philipp</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a301t-509e093a6dd3fc069b712f1c30e4e5727586ff61e2e6446864f52749eeb2ea663</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Computer graphics</topic><topic>Computing methodologies</topic><topic>Ray tracing</topic><topic>Rendering</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Grittmann, Pascal</creatorcontrib><creatorcontrib>Yazici, Ömercan</creatorcontrib><creatorcontrib>Georgiev, Iliyan</creatorcontrib><creatorcontrib>Slusallek, Philipp</creatorcontrib><collection>CrossRef</collection><jtitle>ACM transactions on graphics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Grittmann, Pascal</au><au>Yazici, Ömercan</au><au>Georgiev, Iliyan</au><au>Slusallek, Philipp</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Efficiency-aware multiple importance sampling for bidirectional rendering algorithms</atitle><jtitle>ACM transactions on graphics</jtitle><stitle>ACM TOG</stitle><date>2022-07-22</date><risdate>2022</risdate><volume>41</volume><issue>4</issue><spage>1</spage><epage>12</epage><pages>1-12</pages><artnum>80</artnum><issn>0730-0301</issn><eissn>1557-7368</eissn><abstract>Multiple importance sampling (MIS) is an indispensable tool in light-transport simulation. It enables robust Monte Carlo integration by combining samples from several techniques. However, it is well understood that such a combination is not always more efficient than using a single sampling technique. Thus a major criticism of complex combined estimators, such as bidirectional path tracing, is that they can be significantly less efficient on common scenes than simpler algorithms like forward path tracing. We propose a general method to improve MIS efficiency: By cheaply estimating the efficiencies of various technique and sample-count combinations, we can pick the best one. The key ingredient is a numerically robust and efficient scheme that uses the samples of one MIS combination to compute the efficiency of multiple other combinations. For example, we can run forward path tracing and use its samples to decide which subset of VCM to enable, and at what sampling rates. The sample count for each technique can be controlled per-pixel or globally. Applied to VCM, our approach enables robust rendering of complex scenes with caustics, without compromising efficiency on simpler scenes.</abstract><cop>New York, NY, USA</cop><pub>ACM</pub><doi>10.1145/3528223.3530126</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-9655-2138</orcidid><orcidid>https://orcid.org/0000-0002-5325-3744</orcidid><orcidid>https://orcid.org/0000-0003-0306-757X</orcidid><orcidid>https://orcid.org/0000-0002-2189-2429</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0730-0301
ispartof ACM transactions on graphics, 2022-07, Vol.41 (4), p.1-12, Article 80
issn 0730-0301
1557-7368
language eng
recordid cdi_crossref_primary_10_1145_3528223_3530126
source ACM Digital Library Complete
subjects Computer graphics
Computing methodologies
Ray tracing
Rendering
title Efficiency-aware multiple importance sampling for bidirectional rendering algorithms
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T02%3A30%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-acm_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Efficiency-aware%20multiple%20importance%20sampling%20for%20bidirectional%20rendering%20algorithms&rft.jtitle=ACM%20transactions%20on%20graphics&rft.au=Grittmann,%20Pascal&rft.date=2022-07-22&rft.volume=41&rft.issue=4&rft.spage=1&rft.epage=12&rft.pages=1-12&rft.artnum=80&rft.issn=0730-0301&rft.eissn=1557-7368&rft_id=info:doi/10.1145/3528223.3530126&rft_dat=%3Cacm_cross%3E3530126%3C/acm_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true