Scalable Katz Ranking Computation in Large Static and Dynamic Graphs
Network analysis defines a number of centrality measures to identify the most central nodes in a network. Fast computation of those measures is a major challenge in algorithmic network analysis. Aside from closeness and betweenness, Katz centrality is one of the established centrality measures. In t...
Gespeichert in:
Veröffentlicht in: | The ACM journal of experimental algorithmics 2022-07, Vol.27 (1), p.1-16, Article 1.7 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 16 |
---|---|
container_issue | 1 |
container_start_page | 1 |
container_title | The ACM journal of experimental algorithmics |
container_volume | 27 |
creator | Grinten van der, Alexander Bergamini, Elisabetta Green, Oded Bader, David A. Meyerhenke, Henning |
description | Network analysis defines a number of centrality measures to identify the most central nodes in a network. Fast computation of those measures is a major challenge in algorithmic network analysis. Aside from closeness and betweenness, Katz centrality is one of the established centrality measures. In this article, we consider the problem of computing rankings for Katz centrality. In particular, we propose upper and lower bounds on the Katz score of a given node. Previous approaches relied on numerical approximation or heuristics to compute Katz centrality rankings; however, we construct an algorithm that iteratively improves those upper and lower bounds until a correct Katz ranking is obtained. We extend our algorithm to dynamic graphs while maintaining its correctness guarantees. Experiments demonstrate that our static graph algorithm outperforms both numerical approaches and heuristics with speedups between \( 1.5\times \) and \( 3.5\times \) , depending on the desired quality guarantees. Our dynamic graph algorithm improves upon the static algorithm for update batches of less than 10,000 edges. We provide efficient parallel CPU and GPU implementations of our algorithms that enable near real-time Katz centrality computation for graphs with hundreds of millions of edges in fractions of seconds. |
doi_str_mv | 10.1145/3524615 |
format | Article |
fullrecord | <record><control><sourceid>acm_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1145_3524615</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3524615</sourcerecordid><originalsourceid>FETCH-LOGICAL-a1545-c39fbae24fc5f68ec05c91fd32d5d0a0044b0a8a5cf1486d65009f2bc04cc6573</originalsourceid><addsrcrecordid>eNpNjzFPwzAUhC0EEqUgdiZvTIHn2M8kI0qhICIhUZijF8cugcSJ7DKUX0-rFsR0p7tPJx1j5wKuhFB4LTFVWuABmwjIVKI1qsN__pidxPgBICRIOWGzhaGO6s7yJ1p98xfyn61f8mLox68VrdrB89bzksLS8sU2MJx8w2drT_3GzwON7_GUHTnqoj3b65S93d-9Fg9J-Tx_LG7LhAQqTIzMXU02Vc6g05k1gCYXrpFpgw0QgFI1UEZonFCZbjQC5C6tDShjNN7IKbvc7ZowxBisq8bQ9hTWlYBqe77an9-QFzuSTP8H_ZY_5xdTJg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Scalable Katz Ranking Computation in Large Static and Dynamic Graphs</title><source>ACM Digital Library</source><creator>Grinten van der, Alexander ; Bergamini, Elisabetta ; Green, Oded ; Bader, David A. ; Meyerhenke, Henning</creator><creatorcontrib>Grinten van der, Alexander ; Bergamini, Elisabetta ; Green, Oded ; Bader, David A. ; Meyerhenke, Henning</creatorcontrib><description>Network analysis defines a number of centrality measures to identify the most central nodes in a network. Fast computation of those measures is a major challenge in algorithmic network analysis. Aside from closeness and betweenness, Katz centrality is one of the established centrality measures. In this article, we consider the problem of computing rankings for Katz centrality. In particular, we propose upper and lower bounds on the Katz score of a given node. Previous approaches relied on numerical approximation or heuristics to compute Katz centrality rankings; however, we construct an algorithm that iteratively improves those upper and lower bounds until a correct Katz ranking is obtained. We extend our algorithm to dynamic graphs while maintaining its correctness guarantees. Experiments demonstrate that our static graph algorithm outperforms both numerical approaches and heuristics with speedups between \( 1.5\times \) and \( 3.5\times \) , depending on the desired quality guarantees. Our dynamic graph algorithm improves upon the static algorithm for update batches of less than 10,000 edges. We provide efficient parallel CPU and GPU implementations of our algorithms that enable near real-time Katz centrality computation for graphs with hundreds of millions of edges in fractions of seconds.</description><identifier>ISSN: 1084-6654</identifier><identifier>EISSN: 1084-6654</identifier><identifier>DOI: 10.1145/3524615</identifier><language>eng</language><publisher>New York, NY: ACM</publisher><subject>Dynamic graph algorithms ; Parallel algorithms ; Theory of computation</subject><ispartof>The ACM journal of experimental algorithmics, 2022-07, Vol.27 (1), p.1-16, Article 1.7</ispartof><rights>Copyright held by the owner/author(s).</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-a1545-c39fbae24fc5f68ec05c91fd32d5d0a0044b0a8a5cf1486d65009f2bc04cc6573</cites><orcidid>0000-0003-3658-1233 ; 0000-0002-7769-726X ; 0000-0002-9709-9478 ; 0000-0002-6480-0213 ; 0000-0002-7380-5876</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://dl.acm.org/doi/pdf/10.1145/3524615$$EPDF$$P50$$Gacm$$Hfree_for_read</linktopdf><link.rule.ids>314,780,784,2282,27924,27925,40196,76228</link.rule.ids></links><search><creatorcontrib>Grinten van der, Alexander</creatorcontrib><creatorcontrib>Bergamini, Elisabetta</creatorcontrib><creatorcontrib>Green, Oded</creatorcontrib><creatorcontrib>Bader, David A.</creatorcontrib><creatorcontrib>Meyerhenke, Henning</creatorcontrib><title>Scalable Katz Ranking Computation in Large Static and Dynamic Graphs</title><title>The ACM journal of experimental algorithmics</title><addtitle>ACM JEA</addtitle><description>Network analysis defines a number of centrality measures to identify the most central nodes in a network. Fast computation of those measures is a major challenge in algorithmic network analysis. Aside from closeness and betweenness, Katz centrality is one of the established centrality measures. In this article, we consider the problem of computing rankings for Katz centrality. In particular, we propose upper and lower bounds on the Katz score of a given node. Previous approaches relied on numerical approximation or heuristics to compute Katz centrality rankings; however, we construct an algorithm that iteratively improves those upper and lower bounds until a correct Katz ranking is obtained. We extend our algorithm to dynamic graphs while maintaining its correctness guarantees. Experiments demonstrate that our static graph algorithm outperforms both numerical approaches and heuristics with speedups between \( 1.5\times \) and \( 3.5\times \) , depending on the desired quality guarantees. Our dynamic graph algorithm improves upon the static algorithm for update batches of less than 10,000 edges. We provide efficient parallel CPU and GPU implementations of our algorithms that enable near real-time Katz centrality computation for graphs with hundreds of millions of edges in fractions of seconds.</description><subject>Dynamic graph algorithms</subject><subject>Parallel algorithms</subject><subject>Theory of computation</subject><issn>1084-6654</issn><issn>1084-6654</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNpNjzFPwzAUhC0EEqUgdiZvTIHn2M8kI0qhICIhUZijF8cugcSJ7DKUX0-rFsR0p7tPJx1j5wKuhFB4LTFVWuABmwjIVKI1qsN__pidxPgBICRIOWGzhaGO6s7yJ1p98xfyn61f8mLox68VrdrB89bzksLS8sU2MJx8w2drT_3GzwON7_GUHTnqoj3b65S93d-9Fg9J-Tx_LG7LhAQqTIzMXU02Vc6g05k1gCYXrpFpgw0QgFI1UEZonFCZbjQC5C6tDShjNN7IKbvc7ZowxBisq8bQ9hTWlYBqe77an9-QFzuSTP8H_ZY_5xdTJg</recordid><startdate>20220707</startdate><enddate>20220707</enddate><creator>Grinten van der, Alexander</creator><creator>Bergamini, Elisabetta</creator><creator>Green, Oded</creator><creator>Bader, David A.</creator><creator>Meyerhenke, Henning</creator><general>ACM</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0003-3658-1233</orcidid><orcidid>https://orcid.org/0000-0002-7769-726X</orcidid><orcidid>https://orcid.org/0000-0002-9709-9478</orcidid><orcidid>https://orcid.org/0000-0002-6480-0213</orcidid><orcidid>https://orcid.org/0000-0002-7380-5876</orcidid></search><sort><creationdate>20220707</creationdate><title>Scalable Katz Ranking Computation in Large Static and Dynamic Graphs</title><author>Grinten van der, Alexander ; Bergamini, Elisabetta ; Green, Oded ; Bader, David A. ; Meyerhenke, Henning</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a1545-c39fbae24fc5f68ec05c91fd32d5d0a0044b0a8a5cf1486d65009f2bc04cc6573</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Dynamic graph algorithms</topic><topic>Parallel algorithms</topic><topic>Theory of computation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Grinten van der, Alexander</creatorcontrib><creatorcontrib>Bergamini, Elisabetta</creatorcontrib><creatorcontrib>Green, Oded</creatorcontrib><creatorcontrib>Bader, David A.</creatorcontrib><creatorcontrib>Meyerhenke, Henning</creatorcontrib><collection>CrossRef</collection><jtitle>The ACM journal of experimental algorithmics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Grinten van der, Alexander</au><au>Bergamini, Elisabetta</au><au>Green, Oded</au><au>Bader, David A.</au><au>Meyerhenke, Henning</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Scalable Katz Ranking Computation in Large Static and Dynamic Graphs</atitle><jtitle>The ACM journal of experimental algorithmics</jtitle><stitle>ACM JEA</stitle><date>2022-07-07</date><risdate>2022</risdate><volume>27</volume><issue>1</issue><spage>1</spage><epage>16</epage><pages>1-16</pages><artnum>1.7</artnum><issn>1084-6654</issn><eissn>1084-6654</eissn><abstract>Network analysis defines a number of centrality measures to identify the most central nodes in a network. Fast computation of those measures is a major challenge in algorithmic network analysis. Aside from closeness and betweenness, Katz centrality is one of the established centrality measures. In this article, we consider the problem of computing rankings for Katz centrality. In particular, we propose upper and lower bounds on the Katz score of a given node. Previous approaches relied on numerical approximation or heuristics to compute Katz centrality rankings; however, we construct an algorithm that iteratively improves those upper and lower bounds until a correct Katz ranking is obtained. We extend our algorithm to dynamic graphs while maintaining its correctness guarantees. Experiments demonstrate that our static graph algorithm outperforms both numerical approaches and heuristics with speedups between \( 1.5\times \) and \( 3.5\times \) , depending on the desired quality guarantees. Our dynamic graph algorithm improves upon the static algorithm for update batches of less than 10,000 edges. We provide efficient parallel CPU and GPU implementations of our algorithms that enable near real-time Katz centrality computation for graphs with hundreds of millions of edges in fractions of seconds.</abstract><cop>New York, NY</cop><pub>ACM</pub><doi>10.1145/3524615</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0003-3658-1233</orcidid><orcidid>https://orcid.org/0000-0002-7769-726X</orcidid><orcidid>https://orcid.org/0000-0002-9709-9478</orcidid><orcidid>https://orcid.org/0000-0002-6480-0213</orcidid><orcidid>https://orcid.org/0000-0002-7380-5876</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1084-6654 |
ispartof | The ACM journal of experimental algorithmics, 2022-07, Vol.27 (1), p.1-16, Article 1.7 |
issn | 1084-6654 1084-6654 |
language | eng |
recordid | cdi_crossref_primary_10_1145_3524615 |
source | ACM Digital Library |
subjects | Dynamic graph algorithms Parallel algorithms Theory of computation |
title | Scalable Katz Ranking Computation in Large Static and Dynamic Graphs |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-19T19%3A10%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-acm_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Scalable%20Katz%20Ranking%20Computation%20in%20Large%20Static%20and%20Dynamic%20Graphs&rft.jtitle=The%20ACM%20journal%20of%20experimental%20algorithmics&rft.au=Grinten%20van%20der,%20Alexander&rft.date=2022-07-07&rft.volume=27&rft.issue=1&rft.spage=1&rft.epage=16&rft.pages=1-16&rft.artnum=1.7&rft.issn=1084-6654&rft.eissn=1084-6654&rft_id=info:doi/10.1145/3524615&rft_dat=%3Cacm_cross%3E3524615%3C/acm_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |