Information batteries: storing opportunity power with speculative execution

Coping with the intermittency of renewable power is a fundamental challenge, with load shifting and grid-scale storage as key responses. We propose Information Batteries (IB), in which energy is stored in the form of information---specifically, the results of completed computational tasks. Informati...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Energy informatics review 2021-11, Vol.1 (1), p.1-11
Hauptverfasser: Switzer, Jennifer, Raghavan, Barath
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 11
container_issue 1
container_start_page 1
container_title Energy informatics review
container_volume 1
creator Switzer, Jennifer
Raghavan, Barath
description Coping with the intermittency of renewable power is a fundamental challenge, with load shifting and grid-scale storage as key responses. We propose Information Batteries (IB), in which energy is stored in the form of information---specifically, the results of completed computational tasks. Information Batteries thus provide storage through speculative load shifting, anticipating computation that will be performed in the future. We take a distributed systems perspective, and evaluate the extent to which an IB storage system can be made practical through augmentation of compiler toolchains, key-value stores, and other important elements in modern hyper-scale compute. In particular, we implement one specific IB prototype by augmenting the Rust compiler to enable transparent function-level precomputation and caching. We evaluate the overheads this imposes, along with macro-level job prediction and power prediction. We also evaluate the space of operation for an IB system, to identify the best case efficiency of any IB system for a given power and compute regime.
doi_str_mv 10.1145/3508467.3508468
format Article
fullrecord <record><control><sourceid>crossref</sourceid><recordid>TN_cdi_crossref_primary_10_1145_3508467_3508468</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1145_3508467_3508468</sourcerecordid><originalsourceid>FETCH-crossref_primary_10_1145_3508467_35084683</originalsourceid><addsrcrecordid>eNpjYBA3NNAzNDQx1Tc2NbAwMTPXg9AWTAycRubmBrqmxsaGLEhsDgbe4uIsAwMDI0szIyDkZBD1zEvLL8pNLMnMz1NISiwpSS3KTC3mYWBNS8wpTuWF0twM-m6uIc4euslF-cXFRalp8QVFmbmJRZXxhgbxIAfEQx0ApS2MSdcBALU-NTQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Information batteries: storing opportunity power with speculative execution</title><source>ACM Digital Library</source><creator>Switzer, Jennifer ; Raghavan, Barath</creator><creatorcontrib>Switzer, Jennifer ; Raghavan, Barath</creatorcontrib><description>Coping with the intermittency of renewable power is a fundamental challenge, with load shifting and grid-scale storage as key responses. We propose Information Batteries (IB), in which energy is stored in the form of information---specifically, the results of completed computational tasks. Information Batteries thus provide storage through speculative load shifting, anticipating computation that will be performed in the future. We take a distributed systems perspective, and evaluate the extent to which an IB storage system can be made practical through augmentation of compiler toolchains, key-value stores, and other important elements in modern hyper-scale compute. In particular, we implement one specific IB prototype by augmenting the Rust compiler to enable transparent function-level precomputation and caching. We evaluate the overheads this imposes, along with macro-level job prediction and power prediction. We also evaluate the space of operation for an IB system, to identify the best case efficiency of any IB system for a given power and compute regime.</description><identifier>ISSN: 2770-5331</identifier><identifier>EISSN: 2770-5331</identifier><identifier>DOI: 10.1145/3508467.3508468</identifier><language>eng</language><ispartof>Energy informatics review, 2021-11, Vol.1 (1), p.1-11</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-crossref_primary_10_1145_3508467_35084683</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Switzer, Jennifer</creatorcontrib><creatorcontrib>Raghavan, Barath</creatorcontrib><title>Information batteries: storing opportunity power with speculative execution</title><title>Energy informatics review</title><description>Coping with the intermittency of renewable power is a fundamental challenge, with load shifting and grid-scale storage as key responses. We propose Information Batteries (IB), in which energy is stored in the form of information---specifically, the results of completed computational tasks. Information Batteries thus provide storage through speculative load shifting, anticipating computation that will be performed in the future. We take a distributed systems perspective, and evaluate the extent to which an IB storage system can be made practical through augmentation of compiler toolchains, key-value stores, and other important elements in modern hyper-scale compute. In particular, we implement one specific IB prototype by augmenting the Rust compiler to enable transparent function-level precomputation and caching. We evaluate the overheads this imposes, along with macro-level job prediction and power prediction. We also evaluate the space of operation for an IB system, to identify the best case efficiency of any IB system for a given power and compute regime.</description><issn>2770-5331</issn><issn>2770-5331</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNpjYBA3NNAzNDQx1Tc2NbAwMTPXg9AWTAycRubmBrqmxsaGLEhsDgbe4uIsAwMDI0szIyDkZBD1zEvLL8pNLMnMz1NISiwpSS3KTC3mYWBNS8wpTuWF0twM-m6uIc4euslF-cXFRalp8QVFmbmJRZXxhgbxIAfEQx0ApS2MSdcBALU-NTQ</recordid><startdate>202111</startdate><enddate>202111</enddate><creator>Switzer, Jennifer</creator><creator>Raghavan, Barath</creator><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>202111</creationdate><title>Information batteries</title><author>Switzer, Jennifer ; Raghavan, Barath</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-crossref_primary_10_1145_3508467_35084683</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><toplevel>online_resources</toplevel><creatorcontrib>Switzer, Jennifer</creatorcontrib><creatorcontrib>Raghavan, Barath</creatorcontrib><collection>CrossRef</collection><jtitle>Energy informatics review</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Switzer, Jennifer</au><au>Raghavan, Barath</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Information batteries: storing opportunity power with speculative execution</atitle><jtitle>Energy informatics review</jtitle><date>2021-11</date><risdate>2021</risdate><volume>1</volume><issue>1</issue><spage>1</spage><epage>11</epage><pages>1-11</pages><issn>2770-5331</issn><eissn>2770-5331</eissn><abstract>Coping with the intermittency of renewable power is a fundamental challenge, with load shifting and grid-scale storage as key responses. We propose Information Batteries (IB), in which energy is stored in the form of information---specifically, the results of completed computational tasks. Information Batteries thus provide storage through speculative load shifting, anticipating computation that will be performed in the future. We take a distributed systems perspective, and evaluate the extent to which an IB storage system can be made practical through augmentation of compiler toolchains, key-value stores, and other important elements in modern hyper-scale compute. In particular, we implement one specific IB prototype by augmenting the Rust compiler to enable transparent function-level precomputation and caching. We evaluate the overheads this imposes, along with macro-level job prediction and power prediction. We also evaluate the space of operation for an IB system, to identify the best case efficiency of any IB system for a given power and compute regime.</abstract><doi>10.1145/3508467.3508468</doi></addata></record>
fulltext fulltext
identifier ISSN: 2770-5331
ispartof Energy informatics review, 2021-11, Vol.1 (1), p.1-11
issn 2770-5331
2770-5331
language eng
recordid cdi_crossref_primary_10_1145_3508467_3508468
source ACM Digital Library
title Information batteries: storing opportunity power with speculative execution
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T19%3A56%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Information%20batteries:%20storing%20opportunity%20power%20with%20speculative%20execution&rft.jtitle=Energy%20informatics%20review&rft.au=Switzer,%20Jennifer&rft.date=2021-11&rft.volume=1&rft.issue=1&rft.spage=1&rft.epage=11&rft.pages=1-11&rft.issn=2770-5331&rft.eissn=2770-5331&rft_id=info:doi/10.1145/3508467.3508468&rft_dat=%3Ccrossref%3E10_1145_3508467_3508468%3C/crossref%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true