O-Minimal Invariants for Discrete-Time Dynamical Systems
Termination analysis of linear loops plays a key rôle in several areas of computer science, including program verification and abstract interpretation. Already for the simplest variants of linear loops the question of termination relates to deep open problems in number theory, such as the decidabili...
Gespeichert in:
Veröffentlicht in: | ACM transactions on computational logic 2022-04, Vol.23 (2), p.1-20 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 20 |
---|---|
container_issue | 2 |
container_start_page | 1 |
container_title | ACM transactions on computational logic |
container_volume | 23 |
creator | Almagor, Shaull Chistikov, Dmitry Ouaknine, Joël Worrell, James |
description | Termination analysis of linear loops plays a key rôle in several areas of computer science, including program verification and abstract interpretation. Already for the simplest variants of linear loops the question of termination relates to deep open problems in number theory, such as the decidability of the Skolem and Positivity Problems for linear recurrence sequences, or equivalently reachability questions for discrete-time linear dynamical systems. In this article, we introduce the class of
o-minimal invariants
, which is broader than any previously considered, and study the decidability of the existence and algorithmic synthesis of such invariants as certificates of non-termination for linear loops equipped with a large class of halting conditions. We establish two main decidability results, one of them conditional on Schanuel’s conjecture is transcendental number theory. |
doi_str_mv | 10.1145/3501299 |
format | Article |
fullrecord | <record><control><sourceid>crossref</sourceid><recordid>TN_cdi_crossref_primary_10_1145_3501299</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1145_3501299</sourcerecordid><originalsourceid>FETCH-LOGICAL-c258t-9f1ee721fb320c9d0295735941e0f28d2b8a0fbf0a15635a1674a4a1fad6bc4f3</originalsourceid><addsrcrecordid>eNotj8FKAzEURYNYsLbiL8zOVTQvyZtMltJqLVS6sIK74U0mgUhnKskgzN87xa7uXRwu9zB2D-IRQOOTQgHS2is2B0TDrcav63OXlitT4Q27zflbTIxRcs6qPX-PfezoWGz7X0qR-iEX4ZSKdcwu-cHzQ-x8sR576qKbsI8xD77LSzYLdMz-7pIL9vn6cli98d1-s10977iTWA3cBvDeSAiNksLZVkiLRqHV4EWQVSubikRogiDAUiFBaTRpgkBt2Tgd1II9_O-6dMo5-VD_pOluGmsQ9Vm4vgirPzbfRvs</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>O-Minimal Invariants for Discrete-Time Dynamical Systems</title><source>ACM Digital Library Complete</source><creator>Almagor, Shaull ; Chistikov, Dmitry ; Ouaknine, Joël ; Worrell, James</creator><creatorcontrib>Almagor, Shaull ; Chistikov, Dmitry ; Ouaknine, Joël ; Worrell, James</creatorcontrib><description>Termination analysis of linear loops plays a key rôle in several areas of computer science, including program verification and abstract interpretation. Already for the simplest variants of linear loops the question of termination relates to deep open problems in number theory, such as the decidability of the Skolem and Positivity Problems for linear recurrence sequences, or equivalently reachability questions for discrete-time linear dynamical systems. In this article, we introduce the class of
o-minimal invariants
, which is broader than any previously considered, and study the decidability of the existence and algorithmic synthesis of such invariants as certificates of non-termination for linear loops equipped with a large class of halting conditions. We establish two main decidability results, one of them conditional on Schanuel’s conjecture is transcendental number theory.</description><identifier>ISSN: 1529-3785</identifier><identifier>EISSN: 1557-945X</identifier><identifier>DOI: 10.1145/3501299</identifier><language>eng</language><ispartof>ACM transactions on computational logic, 2022-04, Vol.23 (2), p.1-20</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c258t-9f1ee721fb320c9d0295735941e0f28d2b8a0fbf0a15635a1674a4a1fad6bc4f3</citedby><cites>FETCH-LOGICAL-c258t-9f1ee721fb320c9d0295735941e0f28d2b8a0fbf0a15635a1674a4a1fad6bc4f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Almagor, Shaull</creatorcontrib><creatorcontrib>Chistikov, Dmitry</creatorcontrib><creatorcontrib>Ouaknine, Joël</creatorcontrib><creatorcontrib>Worrell, James</creatorcontrib><title>O-Minimal Invariants for Discrete-Time Dynamical Systems</title><title>ACM transactions on computational logic</title><description>Termination analysis of linear loops plays a key rôle in several areas of computer science, including program verification and abstract interpretation. Already for the simplest variants of linear loops the question of termination relates to deep open problems in number theory, such as the decidability of the Skolem and Positivity Problems for linear recurrence sequences, or equivalently reachability questions for discrete-time linear dynamical systems. In this article, we introduce the class of
o-minimal invariants
, which is broader than any previously considered, and study the decidability of the existence and algorithmic synthesis of such invariants as certificates of non-termination for linear loops equipped with a large class of halting conditions. We establish two main decidability results, one of them conditional on Schanuel’s conjecture is transcendental number theory.</description><issn>1529-3785</issn><issn>1557-945X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNotj8FKAzEURYNYsLbiL8zOVTQvyZtMltJqLVS6sIK74U0mgUhnKskgzN87xa7uXRwu9zB2D-IRQOOTQgHS2is2B0TDrcav63OXlitT4Q27zflbTIxRcs6qPX-PfezoWGz7X0qR-iEX4ZSKdcwu-cHzQ-x8sR576qKbsI8xD77LSzYLdMz-7pIL9vn6cli98d1-s10977iTWA3cBvDeSAiNksLZVkiLRqHV4EWQVSubikRogiDAUiFBaTRpgkBt2Tgd1II9_O-6dMo5-VD_pOluGmsQ9Vm4vgirPzbfRvs</recordid><startdate>20220401</startdate><enddate>20220401</enddate><creator>Almagor, Shaull</creator><creator>Chistikov, Dmitry</creator><creator>Ouaknine, Joël</creator><creator>Worrell, James</creator><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20220401</creationdate><title>O-Minimal Invariants for Discrete-Time Dynamical Systems</title><author>Almagor, Shaull ; Chistikov, Dmitry ; Ouaknine, Joël ; Worrell, James</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c258t-9f1ee721fb320c9d0295735941e0f28d2b8a0fbf0a15635a1674a4a1fad6bc4f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Almagor, Shaull</creatorcontrib><creatorcontrib>Chistikov, Dmitry</creatorcontrib><creatorcontrib>Ouaknine, Joël</creatorcontrib><creatorcontrib>Worrell, James</creatorcontrib><collection>CrossRef</collection><jtitle>ACM transactions on computational logic</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Almagor, Shaull</au><au>Chistikov, Dmitry</au><au>Ouaknine, Joël</au><au>Worrell, James</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>O-Minimal Invariants for Discrete-Time Dynamical Systems</atitle><jtitle>ACM transactions on computational logic</jtitle><date>2022-04-01</date><risdate>2022</risdate><volume>23</volume><issue>2</issue><spage>1</spage><epage>20</epage><pages>1-20</pages><issn>1529-3785</issn><eissn>1557-945X</eissn><abstract>Termination analysis of linear loops plays a key rôle in several areas of computer science, including program verification and abstract interpretation. Already for the simplest variants of linear loops the question of termination relates to deep open problems in number theory, such as the decidability of the Skolem and Positivity Problems for linear recurrence sequences, or equivalently reachability questions for discrete-time linear dynamical systems. In this article, we introduce the class of
o-minimal invariants
, which is broader than any previously considered, and study the decidability of the existence and algorithmic synthesis of such invariants as certificates of non-termination for linear loops equipped with a large class of halting conditions. We establish two main decidability results, one of them conditional on Schanuel’s conjecture is transcendental number theory.</abstract><doi>10.1145/3501299</doi><tpages>20</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1529-3785 |
ispartof | ACM transactions on computational logic, 2022-04, Vol.23 (2), p.1-20 |
issn | 1529-3785 1557-945X |
language | eng |
recordid | cdi_crossref_primary_10_1145_3501299 |
source | ACM Digital Library Complete |
title | O-Minimal Invariants for Discrete-Time Dynamical Systems |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T18%3A06%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=O-Minimal%20Invariants%20for%20Discrete-Time%20Dynamical%20Systems&rft.jtitle=ACM%20transactions%20on%20computational%20logic&rft.au=Almagor,%20Shaull&rft.date=2022-04-01&rft.volume=23&rft.issue=2&rft.spage=1&rft.epage=20&rft.pages=1-20&rft.issn=1529-3785&rft.eissn=1557-945X&rft_id=info:doi/10.1145/3501299&rft_dat=%3Ccrossref%3E10_1145_3501299%3C/crossref%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |