O-Minimal Invariants for Discrete-Time Dynamical Systems

Termination analysis of linear loops plays a key rôle in several areas of computer science, including program verification and abstract interpretation. Already for the simplest variants of linear loops the question of termination relates to deep open problems in number theory, such as the decidabili...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACM transactions on computational logic 2022-04, Vol.23 (2), p.1-20
Hauptverfasser: Almagor, Shaull, Chistikov, Dmitry, Ouaknine, Joël, Worrell, James
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 20
container_issue 2
container_start_page 1
container_title ACM transactions on computational logic
container_volume 23
creator Almagor, Shaull
Chistikov, Dmitry
Ouaknine, Joël
Worrell, James
description Termination analysis of linear loops plays a key rôle in several areas of computer science, including program verification and abstract interpretation. Already for the simplest variants of linear loops the question of termination relates to deep open problems in number theory, such as the decidability of the Skolem and Positivity Problems for linear recurrence sequences, or equivalently reachability questions for discrete-time linear dynamical systems. In this article, we introduce the class of o-minimal invariants , which is broader than any previously considered, and study the decidability of the existence and algorithmic synthesis of such invariants as certificates of non-termination for linear loops equipped with a large class of halting conditions. We establish two main decidability results, one of them conditional on Schanuel’s conjecture is transcendental number theory.
doi_str_mv 10.1145/3501299
format Article
fullrecord <record><control><sourceid>crossref</sourceid><recordid>TN_cdi_crossref_primary_10_1145_3501299</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1145_3501299</sourcerecordid><originalsourceid>FETCH-LOGICAL-c258t-9f1ee721fb320c9d0295735941e0f28d2b8a0fbf0a15635a1674a4a1fad6bc4f3</originalsourceid><addsrcrecordid>eNotj8FKAzEURYNYsLbiL8zOVTQvyZtMltJqLVS6sIK74U0mgUhnKskgzN87xa7uXRwu9zB2D-IRQOOTQgHS2is2B0TDrcav63OXlitT4Q27zflbTIxRcs6qPX-PfezoWGz7X0qR-iEX4ZSKdcwu-cHzQ-x8sR576qKbsI8xD77LSzYLdMz-7pIL9vn6cli98d1-s10977iTWA3cBvDeSAiNksLZVkiLRqHV4EWQVSubikRogiDAUiFBaTRpgkBt2Tgd1II9_O-6dMo5-VD_pOluGmsQ9Vm4vgirPzbfRvs</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>O-Minimal Invariants for Discrete-Time Dynamical Systems</title><source>ACM Digital Library Complete</source><creator>Almagor, Shaull ; Chistikov, Dmitry ; Ouaknine, Joël ; Worrell, James</creator><creatorcontrib>Almagor, Shaull ; Chistikov, Dmitry ; Ouaknine, Joël ; Worrell, James</creatorcontrib><description>Termination analysis of linear loops plays a key rôle in several areas of computer science, including program verification and abstract interpretation. Already for the simplest variants of linear loops the question of termination relates to deep open problems in number theory, such as the decidability of the Skolem and Positivity Problems for linear recurrence sequences, or equivalently reachability questions for discrete-time linear dynamical systems. In this article, we introduce the class of o-minimal invariants , which is broader than any previously considered, and study the decidability of the existence and algorithmic synthesis of such invariants as certificates of non-termination for linear loops equipped with a large class of halting conditions. We establish two main decidability results, one of them conditional on Schanuel’s conjecture is transcendental number theory.</description><identifier>ISSN: 1529-3785</identifier><identifier>EISSN: 1557-945X</identifier><identifier>DOI: 10.1145/3501299</identifier><language>eng</language><ispartof>ACM transactions on computational logic, 2022-04, Vol.23 (2), p.1-20</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c258t-9f1ee721fb320c9d0295735941e0f28d2b8a0fbf0a15635a1674a4a1fad6bc4f3</citedby><cites>FETCH-LOGICAL-c258t-9f1ee721fb320c9d0295735941e0f28d2b8a0fbf0a15635a1674a4a1fad6bc4f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Almagor, Shaull</creatorcontrib><creatorcontrib>Chistikov, Dmitry</creatorcontrib><creatorcontrib>Ouaknine, Joël</creatorcontrib><creatorcontrib>Worrell, James</creatorcontrib><title>O-Minimal Invariants for Discrete-Time Dynamical Systems</title><title>ACM transactions on computational logic</title><description>Termination analysis of linear loops plays a key rôle in several areas of computer science, including program verification and abstract interpretation. Already for the simplest variants of linear loops the question of termination relates to deep open problems in number theory, such as the decidability of the Skolem and Positivity Problems for linear recurrence sequences, or equivalently reachability questions for discrete-time linear dynamical systems. In this article, we introduce the class of o-minimal invariants , which is broader than any previously considered, and study the decidability of the existence and algorithmic synthesis of such invariants as certificates of non-termination for linear loops equipped with a large class of halting conditions. We establish two main decidability results, one of them conditional on Schanuel’s conjecture is transcendental number theory.</description><issn>1529-3785</issn><issn>1557-945X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNotj8FKAzEURYNYsLbiL8zOVTQvyZtMltJqLVS6sIK74U0mgUhnKskgzN87xa7uXRwu9zB2D-IRQOOTQgHS2is2B0TDrcav63OXlitT4Q27zflbTIxRcs6qPX-PfezoWGz7X0qR-iEX4ZSKdcwu-cHzQ-x8sR576qKbsI8xD77LSzYLdMz-7pIL9vn6cli98d1-s10977iTWA3cBvDeSAiNksLZVkiLRqHV4EWQVSubikRogiDAUiFBaTRpgkBt2Tgd1II9_O-6dMo5-VD_pOluGmsQ9Vm4vgirPzbfRvs</recordid><startdate>20220401</startdate><enddate>20220401</enddate><creator>Almagor, Shaull</creator><creator>Chistikov, Dmitry</creator><creator>Ouaknine, Joël</creator><creator>Worrell, James</creator><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20220401</creationdate><title>O-Minimal Invariants for Discrete-Time Dynamical Systems</title><author>Almagor, Shaull ; Chistikov, Dmitry ; Ouaknine, Joël ; Worrell, James</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c258t-9f1ee721fb320c9d0295735941e0f28d2b8a0fbf0a15635a1674a4a1fad6bc4f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Almagor, Shaull</creatorcontrib><creatorcontrib>Chistikov, Dmitry</creatorcontrib><creatorcontrib>Ouaknine, Joël</creatorcontrib><creatorcontrib>Worrell, James</creatorcontrib><collection>CrossRef</collection><jtitle>ACM transactions on computational logic</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Almagor, Shaull</au><au>Chistikov, Dmitry</au><au>Ouaknine, Joël</au><au>Worrell, James</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>O-Minimal Invariants for Discrete-Time Dynamical Systems</atitle><jtitle>ACM transactions on computational logic</jtitle><date>2022-04-01</date><risdate>2022</risdate><volume>23</volume><issue>2</issue><spage>1</spage><epage>20</epage><pages>1-20</pages><issn>1529-3785</issn><eissn>1557-945X</eissn><abstract>Termination analysis of linear loops plays a key rôle in several areas of computer science, including program verification and abstract interpretation. Already for the simplest variants of linear loops the question of termination relates to deep open problems in number theory, such as the decidability of the Skolem and Positivity Problems for linear recurrence sequences, or equivalently reachability questions for discrete-time linear dynamical systems. In this article, we introduce the class of o-minimal invariants , which is broader than any previously considered, and study the decidability of the existence and algorithmic synthesis of such invariants as certificates of non-termination for linear loops equipped with a large class of halting conditions. We establish two main decidability results, one of them conditional on Schanuel’s conjecture is transcendental number theory.</abstract><doi>10.1145/3501299</doi><tpages>20</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1529-3785
ispartof ACM transactions on computational logic, 2022-04, Vol.23 (2), p.1-20
issn 1529-3785
1557-945X
language eng
recordid cdi_crossref_primary_10_1145_3501299
source ACM Digital Library Complete
title O-Minimal Invariants for Discrete-Time Dynamical Systems
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T18%3A06%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=O-Minimal%20Invariants%20for%20Discrete-Time%20Dynamical%20Systems&rft.jtitle=ACM%20transactions%20on%20computational%20logic&rft.au=Almagor,%20Shaull&rft.date=2022-04-01&rft.volume=23&rft.issue=2&rft.spage=1&rft.epage=20&rft.pages=1-20&rft.issn=1529-3785&rft.eissn=1557-945X&rft_id=info:doi/10.1145/3501299&rft_dat=%3Ccrossref%3E10_1145_3501299%3C/crossref%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true