Auditing Risk Prediction of Long-Term Unemployment

As more and more governments adopt algorithms to support bureaucratic decision-making processes, it becomes urgent to address issues of responsible use and accountability. We examine a contested public service algorithm used in Danish job placement for assessing an individual's risk of long-ter...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the ACM on human-computer interaction 2022-01, Vol.6 (GROUP), p.1-12, Article 8
Hauptverfasser: Seidelin, Cathrine, Moreau, Therese, Shklovski, Irina, Holten Møller, Naja
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 12
container_issue GROUP
container_start_page 1
container_title Proceedings of the ACM on human-computer interaction
container_volume 6
creator Seidelin, Cathrine
Moreau, Therese
Shklovski, Irina
Holten Møller, Naja
description As more and more governments adopt algorithms to support bureaucratic decision-making processes, it becomes urgent to address issues of responsible use and accountability. We examine a contested public service algorithm used in Danish job placement for assessing an individual's risk of long-term unemployment. The study takes inspiration from cooperative audits and was carried out in dialogue with the Danish unemployment services agency. Our audit investigated the practical implementation of algorithms. We find (1) a divergence between the formal documentation and the model tuning code, (2) that the algorithmic model relies on subjectivity, namely the variable which focus on the individual's self-assessment of how long it will take before they get a job, (3) that the algorithm uses the variable "origin" to determine its predictions, and (4) that the documentation neglects to consider the implications of using variables indicating personal characteristics when predicting employment outcomes. We discuss the benefits and limitations of cooperative audits in a public sector context. We specifically focus on the importance of collaboration across different public actors when investigating the use of algorithms in the algorithmic society.
doi_str_mv 10.1145/3492827
format Article
fullrecord <record><control><sourceid>acm_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1145_3492827</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3492827</sourcerecordid><originalsourceid>FETCH-LOGICAL-a1927-58ac426d7c22c3d407b0c69248aa6d59888d27b42fcdeb91adaf2b33a63b9f33</originalsourceid><addsrcrecordid>eNpNj0tLAzEYRYMoWGpx72p2rkaTL8kkWZbiCwYsZVwPmTxKtJmUZFz036u0iqt74R4uHISuCb4jhPF7yhRIEGdoBlzQGhMG5__6JVqU8o4xJpJjrmCGYPlpwxTGbbUJ5aNaZ2eDmUIaq-SrNo3bunM5Vm-ji_tdOkQ3TlfowutdcYtTzlH3-NCtnuv29elltWxrTRSImkttGDRWGABDLcNiwKZRwKTWjeVKSmlBDAy8sW5QRFvtYaBUN3RQntI5uj3empxKyc73-xyizoee4P5Htj_JfpM3R1Kb-Af9jl_G4U1z</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Auditing Risk Prediction of Long-Term Unemployment</title><source>ACM Digital Library</source><creator>Seidelin, Cathrine ; Moreau, Therese ; Shklovski, Irina ; Holten Møller, Naja</creator><creatorcontrib>Seidelin, Cathrine ; Moreau, Therese ; Shklovski, Irina ; Holten Møller, Naja</creatorcontrib><description>As more and more governments adopt algorithms to support bureaucratic decision-making processes, it becomes urgent to address issues of responsible use and accountability. We examine a contested public service algorithm used in Danish job placement for assessing an individual's risk of long-term unemployment. The study takes inspiration from cooperative audits and was carried out in dialogue with the Danish unemployment services agency. Our audit investigated the practical implementation of algorithms. We find (1) a divergence between the formal documentation and the model tuning code, (2) that the algorithmic model relies on subjectivity, namely the variable which focus on the individual's self-assessment of how long it will take before they get a job, (3) that the algorithm uses the variable "origin" to determine its predictions, and (4) that the documentation neglects to consider the implications of using variables indicating personal characteristics when predicting employment outcomes. We discuss the benefits and limitations of cooperative audits in a public sector context. We specifically focus on the importance of collaboration across different public actors when investigating the use of algorithms in the algorithmic society.</description><identifier>ISSN: 2573-0142</identifier><identifier>EISSN: 2573-0142</identifier><identifier>DOI: 10.1145/3492827</identifier><language>eng</language><publisher>New York, NY, USA: ACM</publisher><subject>Field studies ; HCI design and evaluation methods ; Human computer interaction (HCI) ; Human-centered computing</subject><ispartof>Proceedings of the ACM on human-computer interaction, 2022-01, Vol.6 (GROUP), p.1-12, Article 8</ispartof><rights>Owner/Author</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a1927-58ac426d7c22c3d407b0c69248aa6d59888d27b42fcdeb91adaf2b33a63b9f33</citedby><cites>FETCH-LOGICAL-a1927-58ac426d7c22c3d407b0c69248aa6d59888d27b42fcdeb91adaf2b33a63b9f33</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://dl.acm.org/doi/pdf/10.1145/3492827$$EPDF$$P50$$Gacm$$Hfree_for_read</linktopdf><link.rule.ids>314,776,780,2276,27901,27902,40172,75971</link.rule.ids></links><search><creatorcontrib>Seidelin, Cathrine</creatorcontrib><creatorcontrib>Moreau, Therese</creatorcontrib><creatorcontrib>Shklovski, Irina</creatorcontrib><creatorcontrib>Holten Møller, Naja</creatorcontrib><title>Auditing Risk Prediction of Long-Term Unemployment</title><title>Proceedings of the ACM on human-computer interaction</title><addtitle>ACM PACMHCI</addtitle><description>As more and more governments adopt algorithms to support bureaucratic decision-making processes, it becomes urgent to address issues of responsible use and accountability. We examine a contested public service algorithm used in Danish job placement for assessing an individual's risk of long-term unemployment. The study takes inspiration from cooperative audits and was carried out in dialogue with the Danish unemployment services agency. Our audit investigated the practical implementation of algorithms. We find (1) a divergence between the formal documentation and the model tuning code, (2) that the algorithmic model relies on subjectivity, namely the variable which focus on the individual's self-assessment of how long it will take before they get a job, (3) that the algorithm uses the variable "origin" to determine its predictions, and (4) that the documentation neglects to consider the implications of using variables indicating personal characteristics when predicting employment outcomes. We discuss the benefits and limitations of cooperative audits in a public sector context. We specifically focus on the importance of collaboration across different public actors when investigating the use of algorithms in the algorithmic society.</description><subject>Field studies</subject><subject>HCI design and evaluation methods</subject><subject>Human computer interaction (HCI)</subject><subject>Human-centered computing</subject><issn>2573-0142</issn><issn>2573-0142</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNpNj0tLAzEYRYMoWGpx72p2rkaTL8kkWZbiCwYsZVwPmTxKtJmUZFz036u0iqt74R4uHISuCb4jhPF7yhRIEGdoBlzQGhMG5__6JVqU8o4xJpJjrmCGYPlpwxTGbbUJ5aNaZ2eDmUIaq-SrNo3bunM5Vm-ji_tdOkQ3TlfowutdcYtTzlH3-NCtnuv29elltWxrTRSImkttGDRWGABDLcNiwKZRwKTWjeVKSmlBDAy8sW5QRFvtYaBUN3RQntI5uj3empxKyc73-xyizoee4P5Htj_JfpM3R1Kb-Af9jl_G4U1z</recordid><startdate>20220114</startdate><enddate>20220114</enddate><creator>Seidelin, Cathrine</creator><creator>Moreau, Therese</creator><creator>Shklovski, Irina</creator><creator>Holten Møller, Naja</creator><general>ACM</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20220114</creationdate><title>Auditing Risk Prediction of Long-Term Unemployment</title><author>Seidelin, Cathrine ; Moreau, Therese ; Shklovski, Irina ; Holten Møller, Naja</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a1927-58ac426d7c22c3d407b0c69248aa6d59888d27b42fcdeb91adaf2b33a63b9f33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Field studies</topic><topic>HCI design and evaluation methods</topic><topic>Human computer interaction (HCI)</topic><topic>Human-centered computing</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Seidelin, Cathrine</creatorcontrib><creatorcontrib>Moreau, Therese</creatorcontrib><creatorcontrib>Shklovski, Irina</creatorcontrib><creatorcontrib>Holten Møller, Naja</creatorcontrib><collection>CrossRef</collection><jtitle>Proceedings of the ACM on human-computer interaction</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Seidelin, Cathrine</au><au>Moreau, Therese</au><au>Shklovski, Irina</au><au>Holten Møller, Naja</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Auditing Risk Prediction of Long-Term Unemployment</atitle><jtitle>Proceedings of the ACM on human-computer interaction</jtitle><stitle>ACM PACMHCI</stitle><date>2022-01-14</date><risdate>2022</risdate><volume>6</volume><issue>GROUP</issue><spage>1</spage><epage>12</epage><pages>1-12</pages><artnum>8</artnum><issn>2573-0142</issn><eissn>2573-0142</eissn><abstract>As more and more governments adopt algorithms to support bureaucratic decision-making processes, it becomes urgent to address issues of responsible use and accountability. We examine a contested public service algorithm used in Danish job placement for assessing an individual's risk of long-term unemployment. The study takes inspiration from cooperative audits and was carried out in dialogue with the Danish unemployment services agency. Our audit investigated the practical implementation of algorithms. We find (1) a divergence between the formal documentation and the model tuning code, (2) that the algorithmic model relies on subjectivity, namely the variable which focus on the individual's self-assessment of how long it will take before they get a job, (3) that the algorithm uses the variable "origin" to determine its predictions, and (4) that the documentation neglects to consider the implications of using variables indicating personal characteristics when predicting employment outcomes. We discuss the benefits and limitations of cooperative audits in a public sector context. We specifically focus on the importance of collaboration across different public actors when investigating the use of algorithms in the algorithmic society.</abstract><cop>New York, NY, USA</cop><pub>ACM</pub><doi>10.1145/3492827</doi><tpages>12</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2573-0142
ispartof Proceedings of the ACM on human-computer interaction, 2022-01, Vol.6 (GROUP), p.1-12, Article 8
issn 2573-0142
2573-0142
language eng
recordid cdi_crossref_primary_10_1145_3492827
source ACM Digital Library
subjects Field studies
HCI design and evaluation methods
Human computer interaction (HCI)
Human-centered computing
title Auditing Risk Prediction of Long-Term Unemployment
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T18%3A56%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-acm_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Auditing%20Risk%20Prediction%20of%20Long-Term%20Unemployment&rft.jtitle=Proceedings%20of%20the%20ACM%20on%20human-computer%20interaction&rft.au=Seidelin,%20Cathrine&rft.date=2022-01-14&rft.volume=6&rft.issue=GROUP&rft.spage=1&rft.epage=12&rft.pages=1-12&rft.artnum=8&rft.issn=2573-0142&rft.eissn=2573-0142&rft_id=info:doi/10.1145/3492827&rft_dat=%3Cacm_cross%3E3492827%3C/acm_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true