Auditing Risk Prediction of Long-Term Unemployment
As more and more governments adopt algorithms to support bureaucratic decision-making processes, it becomes urgent to address issues of responsible use and accountability. We examine a contested public service algorithm used in Danish job placement for assessing an individual's risk of long-ter...
Gespeichert in:
Veröffentlicht in: | Proceedings of the ACM on human-computer interaction 2022-01, Vol.6 (GROUP), p.1-12, Article 8 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 12 |
---|---|
container_issue | GROUP |
container_start_page | 1 |
container_title | Proceedings of the ACM on human-computer interaction |
container_volume | 6 |
creator | Seidelin, Cathrine Moreau, Therese Shklovski, Irina Holten Møller, Naja |
description | As more and more governments adopt algorithms to support bureaucratic decision-making processes, it becomes urgent to address issues of responsible use and accountability. We examine a contested public service algorithm used in Danish job placement for assessing an individual's risk of long-term unemployment. The study takes inspiration from cooperative audits and was carried out in dialogue with the Danish unemployment services agency. Our audit investigated the practical implementation of algorithms. We find (1) a divergence between the formal documentation and the model tuning code, (2) that the algorithmic model relies on subjectivity, namely the variable which focus on the individual's self-assessment of how long it will take before they get a job, (3) that the algorithm uses the variable "origin" to determine its predictions, and (4) that the documentation neglects to consider the implications of using variables indicating personal characteristics when predicting employment outcomes. We discuss the benefits and limitations of cooperative audits in a public sector context. We specifically focus on the importance of collaboration across different public actors when investigating the use of algorithms in the algorithmic society. |
doi_str_mv | 10.1145/3492827 |
format | Article |
fullrecord | <record><control><sourceid>acm_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1145_3492827</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3492827</sourcerecordid><originalsourceid>FETCH-LOGICAL-a1927-58ac426d7c22c3d407b0c69248aa6d59888d27b42fcdeb91adaf2b33a63b9f33</originalsourceid><addsrcrecordid>eNpNj0tLAzEYRYMoWGpx72p2rkaTL8kkWZbiCwYsZVwPmTxKtJmUZFz036u0iqt74R4uHISuCb4jhPF7yhRIEGdoBlzQGhMG5__6JVqU8o4xJpJjrmCGYPlpwxTGbbUJ5aNaZ2eDmUIaq-SrNo3bunM5Vm-ji_tdOkQ3TlfowutdcYtTzlH3-NCtnuv29elltWxrTRSImkttGDRWGABDLcNiwKZRwKTWjeVKSmlBDAy8sW5QRFvtYaBUN3RQntI5uj3empxKyc73-xyizoee4P5Htj_JfpM3R1Kb-Af9jl_G4U1z</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Auditing Risk Prediction of Long-Term Unemployment</title><source>ACM Digital Library</source><creator>Seidelin, Cathrine ; Moreau, Therese ; Shklovski, Irina ; Holten Møller, Naja</creator><creatorcontrib>Seidelin, Cathrine ; Moreau, Therese ; Shklovski, Irina ; Holten Møller, Naja</creatorcontrib><description>As more and more governments adopt algorithms to support bureaucratic decision-making processes, it becomes urgent to address issues of responsible use and accountability. We examine a contested public service algorithm used in Danish job placement for assessing an individual's risk of long-term unemployment. The study takes inspiration from cooperative audits and was carried out in dialogue with the Danish unemployment services agency. Our audit investigated the practical implementation of algorithms. We find (1) a divergence between the formal documentation and the model tuning code, (2) that the algorithmic model relies on subjectivity, namely the variable which focus on the individual's self-assessment of how long it will take before they get a job, (3) that the algorithm uses the variable "origin" to determine its predictions, and (4) that the documentation neglects to consider the implications of using variables indicating personal characteristics when predicting employment outcomes. We discuss the benefits and limitations of cooperative audits in a public sector context. We specifically focus on the importance of collaboration across different public actors when investigating the use of algorithms in the algorithmic society.</description><identifier>ISSN: 2573-0142</identifier><identifier>EISSN: 2573-0142</identifier><identifier>DOI: 10.1145/3492827</identifier><language>eng</language><publisher>New York, NY, USA: ACM</publisher><subject>Field studies ; HCI design and evaluation methods ; Human computer interaction (HCI) ; Human-centered computing</subject><ispartof>Proceedings of the ACM on human-computer interaction, 2022-01, Vol.6 (GROUP), p.1-12, Article 8</ispartof><rights>Owner/Author</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a1927-58ac426d7c22c3d407b0c69248aa6d59888d27b42fcdeb91adaf2b33a63b9f33</citedby><cites>FETCH-LOGICAL-a1927-58ac426d7c22c3d407b0c69248aa6d59888d27b42fcdeb91adaf2b33a63b9f33</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://dl.acm.org/doi/pdf/10.1145/3492827$$EPDF$$P50$$Gacm$$Hfree_for_read</linktopdf><link.rule.ids>314,776,780,2276,27901,27902,40172,75971</link.rule.ids></links><search><creatorcontrib>Seidelin, Cathrine</creatorcontrib><creatorcontrib>Moreau, Therese</creatorcontrib><creatorcontrib>Shklovski, Irina</creatorcontrib><creatorcontrib>Holten Møller, Naja</creatorcontrib><title>Auditing Risk Prediction of Long-Term Unemployment</title><title>Proceedings of the ACM on human-computer interaction</title><addtitle>ACM PACMHCI</addtitle><description>As more and more governments adopt algorithms to support bureaucratic decision-making processes, it becomes urgent to address issues of responsible use and accountability. We examine a contested public service algorithm used in Danish job placement for assessing an individual's risk of long-term unemployment. The study takes inspiration from cooperative audits and was carried out in dialogue with the Danish unemployment services agency. Our audit investigated the practical implementation of algorithms. We find (1) a divergence between the formal documentation and the model tuning code, (2) that the algorithmic model relies on subjectivity, namely the variable which focus on the individual's self-assessment of how long it will take before they get a job, (3) that the algorithm uses the variable "origin" to determine its predictions, and (4) that the documentation neglects to consider the implications of using variables indicating personal characteristics when predicting employment outcomes. We discuss the benefits and limitations of cooperative audits in a public sector context. We specifically focus on the importance of collaboration across different public actors when investigating the use of algorithms in the algorithmic society.</description><subject>Field studies</subject><subject>HCI design and evaluation methods</subject><subject>Human computer interaction (HCI)</subject><subject>Human-centered computing</subject><issn>2573-0142</issn><issn>2573-0142</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNpNj0tLAzEYRYMoWGpx72p2rkaTL8kkWZbiCwYsZVwPmTxKtJmUZFz036u0iqt74R4uHISuCb4jhPF7yhRIEGdoBlzQGhMG5__6JVqU8o4xJpJjrmCGYPlpwxTGbbUJ5aNaZ2eDmUIaq-SrNo3bunM5Vm-ji_tdOkQ3TlfowutdcYtTzlH3-NCtnuv29elltWxrTRSImkttGDRWGABDLcNiwKZRwKTWjeVKSmlBDAy8sW5QRFvtYaBUN3RQntI5uj3empxKyc73-xyizoee4P5Htj_JfpM3R1Kb-Af9jl_G4U1z</recordid><startdate>20220114</startdate><enddate>20220114</enddate><creator>Seidelin, Cathrine</creator><creator>Moreau, Therese</creator><creator>Shklovski, Irina</creator><creator>Holten Møller, Naja</creator><general>ACM</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20220114</creationdate><title>Auditing Risk Prediction of Long-Term Unemployment</title><author>Seidelin, Cathrine ; Moreau, Therese ; Shklovski, Irina ; Holten Møller, Naja</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a1927-58ac426d7c22c3d407b0c69248aa6d59888d27b42fcdeb91adaf2b33a63b9f33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Field studies</topic><topic>HCI design and evaluation methods</topic><topic>Human computer interaction (HCI)</topic><topic>Human-centered computing</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Seidelin, Cathrine</creatorcontrib><creatorcontrib>Moreau, Therese</creatorcontrib><creatorcontrib>Shklovski, Irina</creatorcontrib><creatorcontrib>Holten Møller, Naja</creatorcontrib><collection>CrossRef</collection><jtitle>Proceedings of the ACM on human-computer interaction</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Seidelin, Cathrine</au><au>Moreau, Therese</au><au>Shklovski, Irina</au><au>Holten Møller, Naja</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Auditing Risk Prediction of Long-Term Unemployment</atitle><jtitle>Proceedings of the ACM on human-computer interaction</jtitle><stitle>ACM PACMHCI</stitle><date>2022-01-14</date><risdate>2022</risdate><volume>6</volume><issue>GROUP</issue><spage>1</spage><epage>12</epage><pages>1-12</pages><artnum>8</artnum><issn>2573-0142</issn><eissn>2573-0142</eissn><abstract>As more and more governments adopt algorithms to support bureaucratic decision-making processes, it becomes urgent to address issues of responsible use and accountability. We examine a contested public service algorithm used in Danish job placement for assessing an individual's risk of long-term unemployment. The study takes inspiration from cooperative audits and was carried out in dialogue with the Danish unemployment services agency. Our audit investigated the practical implementation of algorithms. We find (1) a divergence between the formal documentation and the model tuning code, (2) that the algorithmic model relies on subjectivity, namely the variable which focus on the individual's self-assessment of how long it will take before they get a job, (3) that the algorithm uses the variable "origin" to determine its predictions, and (4) that the documentation neglects to consider the implications of using variables indicating personal characteristics when predicting employment outcomes. We discuss the benefits and limitations of cooperative audits in a public sector context. We specifically focus on the importance of collaboration across different public actors when investigating the use of algorithms in the algorithmic society.</abstract><cop>New York, NY, USA</cop><pub>ACM</pub><doi>10.1145/3492827</doi><tpages>12</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2573-0142 |
ispartof | Proceedings of the ACM on human-computer interaction, 2022-01, Vol.6 (GROUP), p.1-12, Article 8 |
issn | 2573-0142 2573-0142 |
language | eng |
recordid | cdi_crossref_primary_10_1145_3492827 |
source | ACM Digital Library |
subjects | Field studies HCI design and evaluation methods Human computer interaction (HCI) Human-centered computing |
title | Auditing Risk Prediction of Long-Term Unemployment |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T18%3A56%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-acm_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Auditing%20Risk%20Prediction%20of%20Long-Term%20Unemployment&rft.jtitle=Proceedings%20of%20the%20ACM%20on%20human-computer%20interaction&rft.au=Seidelin,%20Cathrine&rft.date=2022-01-14&rft.volume=6&rft.issue=GROUP&rft.spage=1&rft.epage=12&rft.pages=1-12&rft.artnum=8&rft.issn=2573-0142&rft.eissn=2573-0142&rft_id=info:doi/10.1145/3492827&rft_dat=%3Cacm_cross%3E3492827%3C/acm_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |