Marvel: A Data-Centric Approach for Mapping Deep Learning Operators on Spatial Accelerators

A spatial accelerator’s efficiency depends heavily on both its mapper and cost models to generate optimized mappings for various operators of DNN models. However, existing cost models lack a formal boundary over their input programs (operators) for accurate and tractable cost analysis of the mapping...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACM transactions on architecture and code optimization 2022-03, Vol.19 (1), p.1-26
Hauptverfasser: Chatarasi, Prasanth, Kwon, Hyoukjun, Parashar, Angshuman, Pellauer, Michael, Krishna, Tushar, Sarkar, Vivek
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!