Marvel: A Data-Centric Approach for Mapping Deep Learning Operators on Spatial Accelerators
A spatial accelerator’s efficiency depends heavily on both its mapper and cost models to generate optimized mappings for various operators of DNN models. However, existing cost models lack a formal boundary over their input programs (operators) for accurate and tractable cost analysis of the mapping...
Gespeichert in:
Veröffentlicht in: | ACM transactions on architecture and code optimization 2022-03, Vol.19 (1), p.1-26 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Schreiben Sie den ersten Kommentar!