Improving the Variational Quantum Eigensolver Using Variational Adiabatic Quantum Computing

The variational quantum eigensolver (VQE) is a hybrid quantum-classical algorithm for finding the minimum eigenvalue of a Hamiltonian that involves the optimization of a parameterized quantum circuit. Since the resulting optimization problem is in general nonconvex, the method can converge to subopt...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACM transactions on quantum computing (Print) 2022-01, Vol.3 (1), p.1-20, Article 1
Hauptverfasser: Harwood, Stuart M., Trenev, Dimitar, Stober, Spencer T., Barkoutsos, Panagiotis, Gujarati, Tanvi P., Mostame, Sarah, Greenberg, Donny
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 20
container_issue 1
container_start_page 1
container_title ACM transactions on quantum computing (Print)
container_volume 3
creator Harwood, Stuart M.
Trenev, Dimitar
Stober, Spencer T.
Barkoutsos, Panagiotis
Gujarati, Tanvi P.
Mostame, Sarah
Greenberg, Donny
description The variational quantum eigensolver (VQE) is a hybrid quantum-classical algorithm for finding the minimum eigenvalue of a Hamiltonian that involves the optimization of a parameterized quantum circuit. Since the resulting optimization problem is in general nonconvex, the method can converge to suboptimal parameter values that do not yield the minimum eigenvalue. In this work, we address this shortcoming by adopting the concept of variational adiabatic quantum computing (VAQC) as a procedure to improve VQE. In VAQC, the ground state of a continuously parameterized Hamiltonian is approximated via a parameterized quantum circuit. We discuss some basic theory of VAQC to motivate the development of a hybrid quantum-classical homotopy continuation method. The proposed method has parallels with a predictor-corrector method for numerical integration of differential equations. While there are theoretical limitations to the procedure, we see in practice that VAQC can successfully find good initial circuit parameters to initialize VQE. We demonstrate this with two examples from quantum chemistry. Through these examples, we provide empirical evidence that VAQC, combined with other techniques (an adaptive termination criteria for the classical optimizer and a variance-based resampling method for the expectation evaluation), can provide more accurate solutions than “plain” VQE, for the same amount of effort.
doi_str_mv 10.1145/3479197
format Article
fullrecord <record><control><sourceid>acm_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1145_3479197</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3479197</sourcerecordid><originalsourceid>FETCH-LOGICAL-a277t-bba924a760bd9dca6ed3a2d8dfa06d40f72c74400d8c633821b845279f9beabe3</originalsourceid><addsrcrecordid>eNpN0MtLw0AQBvBFFCy1ePeUm6fovrKbPZZQtVAQwXrxEGYfqSt5sZsU_O9NaS2eZobvxxw-hG4JfiCEZ4-MS0WUvEAzKjhLRU7k5XnH6hotYvzGGNOMMIrpDH2umz50e9_ukuHLJR8QPAy-a6FO3kZoh7FJVn7n2tjVexeSbTzI_2ppPejpMGdfdE0_DpO7QVcV1NEtTnOOtk-r9-Il3bw-r4vlJgUq5ZBqDYpykAJrq6wB4SwDanNbARaW40pSIznH2OZGMJZTonOeUakqpR1ox-bo_vjXhC7G4KqyD76B8FMSXB5qKU-1TPLuKME0Z_QX_gKQMV5o</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Improving the Variational Quantum Eigensolver Using Variational Adiabatic Quantum Computing</title><source>ACM Digital Library</source><creator>Harwood, Stuart M. ; Trenev, Dimitar ; Stober, Spencer T. ; Barkoutsos, Panagiotis ; Gujarati, Tanvi P. ; Mostame, Sarah ; Greenberg, Donny</creator><creatorcontrib>Harwood, Stuart M. ; Trenev, Dimitar ; Stober, Spencer T. ; Barkoutsos, Panagiotis ; Gujarati, Tanvi P. ; Mostame, Sarah ; Greenberg, Donny</creatorcontrib><description>The variational quantum eigensolver (VQE) is a hybrid quantum-classical algorithm for finding the minimum eigenvalue of a Hamiltonian that involves the optimization of a parameterized quantum circuit. Since the resulting optimization problem is in general nonconvex, the method can converge to suboptimal parameter values that do not yield the minimum eigenvalue. In this work, we address this shortcoming by adopting the concept of variational adiabatic quantum computing (VAQC) as a procedure to improve VQE. In VAQC, the ground state of a continuously parameterized Hamiltonian is approximated via a parameterized quantum circuit. We discuss some basic theory of VAQC to motivate the development of a hybrid quantum-classical homotopy continuation method. The proposed method has parallels with a predictor-corrector method for numerical integration of differential equations. While there are theoretical limitations to the procedure, we see in practice that VAQC can successfully find good initial circuit parameters to initialize VQE. We demonstrate this with two examples from quantum chemistry. Through these examples, we provide empirical evidence that VAQC, combined with other techniques (an adaptive termination criteria for the classical optimizer and a variance-based resampling method for the expectation evaluation), can provide more accurate solutions than “plain” VQE, for the same amount of effort.</description><identifier>ISSN: 2643-6809</identifier><identifier>EISSN: 2643-6817</identifier><identifier>DOI: 10.1145/3479197</identifier><language>eng</language><publisher>New York, NY: ACM</publisher><subject>Computing methodologies ; Mathematics of computing ; Nonconvex optimization ; Quantum computation theory ; Quantum mechanic simulation ; Theory of computation</subject><ispartof>ACM transactions on quantum computing (Print), 2022-01, Vol.3 (1), p.1-20, Article 1</ispartof><rights>Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for third-party components of this work must be honored. For all other uses, contact the owner/author(s).</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a277t-bba924a760bd9dca6ed3a2d8dfa06d40f72c74400d8c633821b845279f9beabe3</citedby><cites>FETCH-LOGICAL-a277t-bba924a760bd9dca6ed3a2d8dfa06d40f72c74400d8c633821b845279f9beabe3</cites><orcidid>0000-0001-5883-9624</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://dl.acm.org/doi/pdf/10.1145/3479197$$EPDF$$P50$$Gacm$$Hfree_for_read</linktopdf><link.rule.ids>314,778,782,2278,27911,27912,40183,75985</link.rule.ids></links><search><creatorcontrib>Harwood, Stuart M.</creatorcontrib><creatorcontrib>Trenev, Dimitar</creatorcontrib><creatorcontrib>Stober, Spencer T.</creatorcontrib><creatorcontrib>Barkoutsos, Panagiotis</creatorcontrib><creatorcontrib>Gujarati, Tanvi P.</creatorcontrib><creatorcontrib>Mostame, Sarah</creatorcontrib><creatorcontrib>Greenberg, Donny</creatorcontrib><title>Improving the Variational Quantum Eigensolver Using Variational Adiabatic Quantum Computing</title><title>ACM transactions on quantum computing (Print)</title><addtitle>ACM TQC</addtitle><description>The variational quantum eigensolver (VQE) is a hybrid quantum-classical algorithm for finding the minimum eigenvalue of a Hamiltonian that involves the optimization of a parameterized quantum circuit. Since the resulting optimization problem is in general nonconvex, the method can converge to suboptimal parameter values that do not yield the minimum eigenvalue. In this work, we address this shortcoming by adopting the concept of variational adiabatic quantum computing (VAQC) as a procedure to improve VQE. In VAQC, the ground state of a continuously parameterized Hamiltonian is approximated via a parameterized quantum circuit. We discuss some basic theory of VAQC to motivate the development of a hybrid quantum-classical homotopy continuation method. The proposed method has parallels with a predictor-corrector method for numerical integration of differential equations. While there are theoretical limitations to the procedure, we see in practice that VAQC can successfully find good initial circuit parameters to initialize VQE. We demonstrate this with two examples from quantum chemistry. Through these examples, we provide empirical evidence that VAQC, combined with other techniques (an adaptive termination criteria for the classical optimizer and a variance-based resampling method for the expectation evaluation), can provide more accurate solutions than “plain” VQE, for the same amount of effort.</description><subject>Computing methodologies</subject><subject>Mathematics of computing</subject><subject>Nonconvex optimization</subject><subject>Quantum computation theory</subject><subject>Quantum mechanic simulation</subject><subject>Theory of computation</subject><issn>2643-6809</issn><issn>2643-6817</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNpN0MtLw0AQBvBFFCy1ePeUm6fovrKbPZZQtVAQwXrxEGYfqSt5sZsU_O9NaS2eZobvxxw-hG4JfiCEZ4-MS0WUvEAzKjhLRU7k5XnH6hotYvzGGNOMMIrpDH2umz50e9_ukuHLJR8QPAy-a6FO3kZoh7FJVn7n2tjVexeSbTzI_2ppPejpMGdfdE0_DpO7QVcV1NEtTnOOtk-r9-Il3bw-r4vlJgUq5ZBqDYpykAJrq6wB4SwDanNbARaW40pSIznH2OZGMJZTonOeUakqpR1ox-bo_vjXhC7G4KqyD76B8FMSXB5qKU-1TPLuKME0Z_QX_gKQMV5o</recordid><startdate>20220114</startdate><enddate>20220114</enddate><creator>Harwood, Stuart M.</creator><creator>Trenev, Dimitar</creator><creator>Stober, Spencer T.</creator><creator>Barkoutsos, Panagiotis</creator><creator>Gujarati, Tanvi P.</creator><creator>Mostame, Sarah</creator><creator>Greenberg, Donny</creator><general>ACM</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0001-5883-9624</orcidid></search><sort><creationdate>20220114</creationdate><title>Improving the Variational Quantum Eigensolver Using Variational Adiabatic Quantum Computing</title><author>Harwood, Stuart M. ; Trenev, Dimitar ; Stober, Spencer T. ; Barkoutsos, Panagiotis ; Gujarati, Tanvi P. ; Mostame, Sarah ; Greenberg, Donny</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a277t-bba924a760bd9dca6ed3a2d8dfa06d40f72c74400d8c633821b845279f9beabe3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Computing methodologies</topic><topic>Mathematics of computing</topic><topic>Nonconvex optimization</topic><topic>Quantum computation theory</topic><topic>Quantum mechanic simulation</topic><topic>Theory of computation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Harwood, Stuart M.</creatorcontrib><creatorcontrib>Trenev, Dimitar</creatorcontrib><creatorcontrib>Stober, Spencer T.</creatorcontrib><creatorcontrib>Barkoutsos, Panagiotis</creatorcontrib><creatorcontrib>Gujarati, Tanvi P.</creatorcontrib><creatorcontrib>Mostame, Sarah</creatorcontrib><creatorcontrib>Greenberg, Donny</creatorcontrib><collection>CrossRef</collection><jtitle>ACM transactions on quantum computing (Print)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Harwood, Stuart M.</au><au>Trenev, Dimitar</au><au>Stober, Spencer T.</au><au>Barkoutsos, Panagiotis</au><au>Gujarati, Tanvi P.</au><au>Mostame, Sarah</au><au>Greenberg, Donny</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Improving the Variational Quantum Eigensolver Using Variational Adiabatic Quantum Computing</atitle><jtitle>ACM transactions on quantum computing (Print)</jtitle><stitle>ACM TQC</stitle><date>2022-01-14</date><risdate>2022</risdate><volume>3</volume><issue>1</issue><spage>1</spage><epage>20</epage><pages>1-20</pages><artnum>1</artnum><issn>2643-6809</issn><eissn>2643-6817</eissn><abstract>The variational quantum eigensolver (VQE) is a hybrid quantum-classical algorithm for finding the minimum eigenvalue of a Hamiltonian that involves the optimization of a parameterized quantum circuit. Since the resulting optimization problem is in general nonconvex, the method can converge to suboptimal parameter values that do not yield the minimum eigenvalue. In this work, we address this shortcoming by adopting the concept of variational adiabatic quantum computing (VAQC) as a procedure to improve VQE. In VAQC, the ground state of a continuously parameterized Hamiltonian is approximated via a parameterized quantum circuit. We discuss some basic theory of VAQC to motivate the development of a hybrid quantum-classical homotopy continuation method. The proposed method has parallels with a predictor-corrector method for numerical integration of differential equations. While there are theoretical limitations to the procedure, we see in practice that VAQC can successfully find good initial circuit parameters to initialize VQE. We demonstrate this with two examples from quantum chemistry. Through these examples, we provide empirical evidence that VAQC, combined with other techniques (an adaptive termination criteria for the classical optimizer and a variance-based resampling method for the expectation evaluation), can provide more accurate solutions than “plain” VQE, for the same amount of effort.</abstract><cop>New York, NY</cop><pub>ACM</pub><doi>10.1145/3479197</doi><tpages>20</tpages><orcidid>https://orcid.org/0000-0001-5883-9624</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2643-6809
ispartof ACM transactions on quantum computing (Print), 2022-01, Vol.3 (1), p.1-20, Article 1
issn 2643-6809
2643-6817
language eng
recordid cdi_crossref_primary_10_1145_3479197
source ACM Digital Library
subjects Computing methodologies
Mathematics of computing
Nonconvex optimization
Quantum computation theory
Quantum mechanic simulation
Theory of computation
title Improving the Variational Quantum Eigensolver Using Variational Adiabatic Quantum Computing
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T10%3A12%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-acm_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Improving%20the%20Variational%20Quantum%20Eigensolver%20Using%20Variational%20Adiabatic%20Quantum%20Computing&rft.jtitle=ACM%20transactions%20on%20quantum%20computing%20(Print)&rft.au=Harwood,%20Stuart%20M.&rft.date=2022-01-14&rft.volume=3&rft.issue=1&rft.spage=1&rft.epage=20&rft.pages=1-20&rft.artnum=1&rft.issn=2643-6809&rft.eissn=2643-6817&rft_id=info:doi/10.1145/3479197&rft_dat=%3Cacm_cross%3E3479197%3C/acm_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true