Learning Transferable Perturbations for Image Captioning
Present studies have discovered that state-of-the-art deep learning models can be attacked by small but well-designed perturbations. Existing attack algorithms for the image captioning task is time-consuming, and their generated adversarial examples cannot transfer well to other models. To generate...
Gespeichert in:
Veröffentlicht in: | ACM transactions on multimedia computing communications and applications 2022-05, Vol.18 (2), p.1-18 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Schreiben Sie den ersten Kommentar!