A Framework for Adversarially Robust Streaming Algorithms

We investigate the adversarial robustness of streaming algorithms. In this context, an algorithm is considered robust if its performance guarantees hold even if the stream is chosen adaptively by an adversary that observes the outputs of the algorithm along the stream and can react in an online mann...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:SIGMOD record 2021-06, Vol.50 (1), p.6-13
Hauptverfasser: Ben-Eliezer, Omri, Jayaram, Rajesh, Woodruff, David P., Yogev, Eylon
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 13
container_issue 1
container_start_page 6
container_title SIGMOD record
container_volume 50
creator Ben-Eliezer, Omri
Jayaram, Rajesh
Woodruff, David P.
Yogev, Eylon
description We investigate the adversarial robustness of streaming algorithms. In this context, an algorithm is considered robust if its performance guarantees hold even if the stream is chosen adaptively by an adversary that observes the outputs of the algorithm along the stream and can react in an online manner. While deterministic streaming algorithms are inherently robust, many central problems in the streaming literature do not admit sublinear-space deterministic algorithms; on the other hand, classical space-efficient randomized algorithms for these problems are generally not adversarially robust. This raises the natural question of whether there exist efficient adversarially robust (randomized) streaming algorithms for these problems.
doi_str_mv 10.1145/3471485.3471488
format Article
fullrecord <record><control><sourceid>crossref</sourceid><recordid>TN_cdi_crossref_primary_10_1145_3471485_3471488</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1145_3471485_3471488</sourcerecordid><originalsourceid>FETCH-crossref_primary_10_1145_3471485_34714883</originalsourceid><addsrcrecordid>eNqVzrsKwjAUgOEMCtbL7JoXaM2hF-NYxOKs7iFqWqOJkXOq0rcXsS_g9E0__IzNQSQAWb5IsyVkMk9-ygGLBBRpnEshR2xMdBUCJBQiYquSV6i9eQe88TogL88vg6TRauc6vgvHJ7V836LR3t4bXromoG0vnqZsWGtHZtY7YYtqc1hv4xMGIjS1eqD1GjsFQn2vVH_VK9P_iw8wa0AG</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>A Framework for Adversarially Robust Streaming Algorithms</title><source>ACM Digital Library Complete</source><creator>Ben-Eliezer, Omri ; Jayaram, Rajesh ; Woodruff, David P. ; Yogev, Eylon</creator><creatorcontrib>Ben-Eliezer, Omri ; Jayaram, Rajesh ; Woodruff, David P. ; Yogev, Eylon</creatorcontrib><description>We investigate the adversarial robustness of streaming algorithms. In this context, an algorithm is considered robust if its performance guarantees hold even if the stream is chosen adaptively by an adversary that observes the outputs of the algorithm along the stream and can react in an online manner. While deterministic streaming algorithms are inherently robust, many central problems in the streaming literature do not admit sublinear-space deterministic algorithms; on the other hand, classical space-efficient randomized algorithms for these problems are generally not adversarially robust. This raises the natural question of whether there exist efficient adversarially robust (randomized) streaming algorithms for these problems.</description><identifier>ISSN: 0163-5808</identifier><identifier>DOI: 10.1145/3471485.3471488</identifier><language>eng</language><ispartof>SIGMOD record, 2021-06, Vol.50 (1), p.6-13</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-crossref_primary_10_1145_3471485_34714883</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27923,27924</link.rule.ids></links><search><creatorcontrib>Ben-Eliezer, Omri</creatorcontrib><creatorcontrib>Jayaram, Rajesh</creatorcontrib><creatorcontrib>Woodruff, David P.</creatorcontrib><creatorcontrib>Yogev, Eylon</creatorcontrib><title>A Framework for Adversarially Robust Streaming Algorithms</title><title>SIGMOD record</title><description>We investigate the adversarial robustness of streaming algorithms. In this context, an algorithm is considered robust if its performance guarantees hold even if the stream is chosen adaptively by an adversary that observes the outputs of the algorithm along the stream and can react in an online manner. While deterministic streaming algorithms are inherently robust, many central problems in the streaming literature do not admit sublinear-space deterministic algorithms; on the other hand, classical space-efficient randomized algorithms for these problems are generally not adversarially robust. This raises the natural question of whether there exist efficient adversarially robust (randomized) streaming algorithms for these problems.</description><issn>0163-5808</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNqVzrsKwjAUgOEMCtbL7JoXaM2hF-NYxOKs7iFqWqOJkXOq0rcXsS_g9E0__IzNQSQAWb5IsyVkMk9-ygGLBBRpnEshR2xMdBUCJBQiYquSV6i9eQe88TogL88vg6TRauc6vgvHJ7V836LR3t4bXromoG0vnqZsWGtHZtY7YYtqc1hv4xMGIjS1eqD1GjsFQn2vVH_VK9P_iw8wa0AG</recordid><startdate>20210615</startdate><enddate>20210615</enddate><creator>Ben-Eliezer, Omri</creator><creator>Jayaram, Rajesh</creator><creator>Woodruff, David P.</creator><creator>Yogev, Eylon</creator><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20210615</creationdate><title>A Framework for Adversarially Robust Streaming Algorithms</title><author>Ben-Eliezer, Omri ; Jayaram, Rajesh ; Woodruff, David P. ; Yogev, Eylon</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-crossref_primary_10_1145_3471485_34714883</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><toplevel>online_resources</toplevel><creatorcontrib>Ben-Eliezer, Omri</creatorcontrib><creatorcontrib>Jayaram, Rajesh</creatorcontrib><creatorcontrib>Woodruff, David P.</creatorcontrib><creatorcontrib>Yogev, Eylon</creatorcontrib><collection>CrossRef</collection><jtitle>SIGMOD record</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ben-Eliezer, Omri</au><au>Jayaram, Rajesh</au><au>Woodruff, David P.</au><au>Yogev, Eylon</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Framework for Adversarially Robust Streaming Algorithms</atitle><jtitle>SIGMOD record</jtitle><date>2021-06-15</date><risdate>2021</risdate><volume>50</volume><issue>1</issue><spage>6</spage><epage>13</epage><pages>6-13</pages><issn>0163-5808</issn><abstract>We investigate the adversarial robustness of streaming algorithms. In this context, an algorithm is considered robust if its performance guarantees hold even if the stream is chosen adaptively by an adversary that observes the outputs of the algorithm along the stream and can react in an online manner. While deterministic streaming algorithms are inherently robust, many central problems in the streaming literature do not admit sublinear-space deterministic algorithms; on the other hand, classical space-efficient randomized algorithms for these problems are generally not adversarially robust. This raises the natural question of whether there exist efficient adversarially robust (randomized) streaming algorithms for these problems.</abstract><doi>10.1145/3471485.3471488</doi></addata></record>
fulltext fulltext
identifier ISSN: 0163-5808
ispartof SIGMOD record, 2021-06, Vol.50 (1), p.6-13
issn 0163-5808
language eng
recordid cdi_crossref_primary_10_1145_3471485_3471488
source ACM Digital Library Complete
title A Framework for Adversarially Robust Streaming Algorithms
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T21%3A29%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Framework%20for%20Adversarially%20Robust%20Streaming%20Algorithms&rft.jtitle=SIGMOD%20record&rft.au=Ben-Eliezer,%20Omri&rft.date=2021-06-15&rft.volume=50&rft.issue=1&rft.spage=6&rft.epage=13&rft.pages=6-13&rft.issn=0163-5808&rft_id=info:doi/10.1145/3471485.3471488&rft_dat=%3Ccrossref%3E10_1145_3471485_3471488%3C/crossref%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true