A Framework for Adversarially Robust Streaming Algorithms
We investigate the adversarial robustness of streaming algorithms. In this context, an algorithm is considered robust if its performance guarantees hold even if the stream is chosen adaptively by an adversary that observes the outputs of the algorithm along the stream and can react in an online mann...
Gespeichert in:
Veröffentlicht in: | SIGMOD record 2021-06, Vol.50 (1), p.6-13 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 13 |
---|---|
container_issue | 1 |
container_start_page | 6 |
container_title | SIGMOD record |
container_volume | 50 |
creator | Ben-Eliezer, Omri Jayaram, Rajesh Woodruff, David P. Yogev, Eylon |
description | We investigate the adversarial robustness of streaming algorithms. In this context, an algorithm is considered robust if its performance guarantees hold even if the stream is chosen adaptively by an adversary that observes the outputs of the algorithm along the stream and can react in an online manner. While deterministic streaming algorithms are inherently robust, many central problems in the streaming literature do not admit sublinear-space deterministic algorithms; on the other hand, classical space-efficient randomized algorithms for these problems are generally not adversarially robust. This raises the natural question of whether there exist efficient adversarially robust (randomized) streaming algorithms for these problems. |
doi_str_mv | 10.1145/3471485.3471488 |
format | Article |
fullrecord | <record><control><sourceid>crossref</sourceid><recordid>TN_cdi_crossref_primary_10_1145_3471485_3471488</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1145_3471485_3471488</sourcerecordid><originalsourceid>FETCH-crossref_primary_10_1145_3471485_34714883</originalsourceid><addsrcrecordid>eNqVzrsKwjAUgOEMCtbL7JoXaM2hF-NYxOKs7iFqWqOJkXOq0rcXsS_g9E0__IzNQSQAWb5IsyVkMk9-ygGLBBRpnEshR2xMdBUCJBQiYquSV6i9eQe88TogL88vg6TRauc6vgvHJ7V836LR3t4bXromoG0vnqZsWGtHZtY7YYtqc1hv4xMGIjS1eqD1GjsFQn2vVH_VK9P_iw8wa0AG</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>A Framework for Adversarially Robust Streaming Algorithms</title><source>ACM Digital Library Complete</source><creator>Ben-Eliezer, Omri ; Jayaram, Rajesh ; Woodruff, David P. ; Yogev, Eylon</creator><creatorcontrib>Ben-Eliezer, Omri ; Jayaram, Rajesh ; Woodruff, David P. ; Yogev, Eylon</creatorcontrib><description>We investigate the adversarial robustness of streaming algorithms. In this context, an algorithm is considered robust if its performance guarantees hold even if the stream is chosen adaptively by an adversary that observes the outputs of the algorithm along the stream and can react in an online manner. While deterministic streaming algorithms are inherently robust, many central problems in the streaming literature do not admit sublinear-space deterministic algorithms; on the other hand, classical space-efficient randomized algorithms for these problems are generally not adversarially robust. This raises the natural question of whether there exist efficient adversarially robust (randomized) streaming algorithms for these problems.</description><identifier>ISSN: 0163-5808</identifier><identifier>DOI: 10.1145/3471485.3471488</identifier><language>eng</language><ispartof>SIGMOD record, 2021-06, Vol.50 (1), p.6-13</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-crossref_primary_10_1145_3471485_34714883</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27923,27924</link.rule.ids></links><search><creatorcontrib>Ben-Eliezer, Omri</creatorcontrib><creatorcontrib>Jayaram, Rajesh</creatorcontrib><creatorcontrib>Woodruff, David P.</creatorcontrib><creatorcontrib>Yogev, Eylon</creatorcontrib><title>A Framework for Adversarially Robust Streaming Algorithms</title><title>SIGMOD record</title><description>We investigate the adversarial robustness of streaming algorithms. In this context, an algorithm is considered robust if its performance guarantees hold even if the stream is chosen adaptively by an adversary that observes the outputs of the algorithm along the stream and can react in an online manner. While deterministic streaming algorithms are inherently robust, many central problems in the streaming literature do not admit sublinear-space deterministic algorithms; on the other hand, classical space-efficient randomized algorithms for these problems are generally not adversarially robust. This raises the natural question of whether there exist efficient adversarially robust (randomized) streaming algorithms for these problems.</description><issn>0163-5808</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNqVzrsKwjAUgOEMCtbL7JoXaM2hF-NYxOKs7iFqWqOJkXOq0rcXsS_g9E0__IzNQSQAWb5IsyVkMk9-ygGLBBRpnEshR2xMdBUCJBQiYquSV6i9eQe88TogL88vg6TRauc6vgvHJ7V836LR3t4bXromoG0vnqZsWGtHZtY7YYtqc1hv4xMGIjS1eqD1GjsFQn2vVH_VK9P_iw8wa0AG</recordid><startdate>20210615</startdate><enddate>20210615</enddate><creator>Ben-Eliezer, Omri</creator><creator>Jayaram, Rajesh</creator><creator>Woodruff, David P.</creator><creator>Yogev, Eylon</creator><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20210615</creationdate><title>A Framework for Adversarially Robust Streaming Algorithms</title><author>Ben-Eliezer, Omri ; Jayaram, Rajesh ; Woodruff, David P. ; Yogev, Eylon</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-crossref_primary_10_1145_3471485_34714883</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><toplevel>online_resources</toplevel><creatorcontrib>Ben-Eliezer, Omri</creatorcontrib><creatorcontrib>Jayaram, Rajesh</creatorcontrib><creatorcontrib>Woodruff, David P.</creatorcontrib><creatorcontrib>Yogev, Eylon</creatorcontrib><collection>CrossRef</collection><jtitle>SIGMOD record</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ben-Eliezer, Omri</au><au>Jayaram, Rajesh</au><au>Woodruff, David P.</au><au>Yogev, Eylon</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Framework for Adversarially Robust Streaming Algorithms</atitle><jtitle>SIGMOD record</jtitle><date>2021-06-15</date><risdate>2021</risdate><volume>50</volume><issue>1</issue><spage>6</spage><epage>13</epage><pages>6-13</pages><issn>0163-5808</issn><abstract>We investigate the adversarial robustness of streaming algorithms. In this context, an algorithm is considered robust if its performance guarantees hold even if the stream is chosen adaptively by an adversary that observes the outputs of the algorithm along the stream and can react in an online manner. While deterministic streaming algorithms are inherently robust, many central problems in the streaming literature do not admit sublinear-space deterministic algorithms; on the other hand, classical space-efficient randomized algorithms for these problems are generally not adversarially robust. This raises the natural question of whether there exist efficient adversarially robust (randomized) streaming algorithms for these problems.</abstract><doi>10.1145/3471485.3471488</doi></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0163-5808 |
ispartof | SIGMOD record, 2021-06, Vol.50 (1), p.6-13 |
issn | 0163-5808 |
language | eng |
recordid | cdi_crossref_primary_10_1145_3471485_3471488 |
source | ACM Digital Library Complete |
title | A Framework for Adversarially Robust Streaming Algorithms |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T21%3A29%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Framework%20for%20Adversarially%20Robust%20Streaming%20Algorithms&rft.jtitle=SIGMOD%20record&rft.au=Ben-Eliezer,%20Omri&rft.date=2021-06-15&rft.volume=50&rft.issue=1&rft.spage=6&rft.epage=13&rft.pages=6-13&rft.issn=0163-5808&rft_id=info:doi/10.1145/3471485.3471488&rft_dat=%3Ccrossref%3E10_1145_3471485_3471488%3C/crossref%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |