Fluid Approximation–based Analysis for Mode-switching Population Dynamics
Fluid approximation results provide powerful methods for scalable analysis of models of population dynamics with large numbers of discrete states and have seen wide-ranging applications in modelling biological and computer-based systems and model checking. However, the applicability of these methods...
Gespeichert in:
Veröffentlicht in: | ACM transactions on modeling and computer simulation 2021-04, Vol.31 (2), p.1-26 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 26 |
---|---|
container_issue | 2 |
container_start_page | 1 |
container_title | ACM transactions on modeling and computer simulation |
container_volume | 31 |
creator | Piho, Paul Hillston, Jane |
description | Fluid approximation results provide powerful methods for scalable analysis of models of population dynamics with large numbers of discrete states and have seen wide-ranging applications in modelling biological and computer-based systems and model checking. However, the applicability of these methods relies on assumptions that are not easily met in a number of modelling scenarios. This article focuses on one particular class of scenarios in which rapid information propagation in the system is considered. In particular, we study the case where changes in population dynamics are induced by information about the environment being communicated between components of the population via broadcast communication. We see how existing hybrid fluid limit results, resulting in piecewise deterministic Markov processes, can be adapted to such models. Finally, we propose heuristic constructions for extracting the mean behaviour from the resulting approximations without the need to simulate individual trajectories. |
doi_str_mv | 10.1145/3441680 |
format | Article |
fullrecord | <record><control><sourceid>crossref</sourceid><recordid>TN_cdi_crossref_primary_10_1145_3441680</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1145_3441680</sourcerecordid><originalsourceid>FETCH-LOGICAL-c220t-ae53290ef5683be381f26c099b1286caf9572d6aa47080ef199a6fd350ffb0123</originalsourceid><addsrcrecordid>eNotkEFOwzAURC0EEqUgrpAdK8P_duzay6pQQBTBAtaR49hglMaRnQq64w7ckJMQoKsZjZ5GoyHkFOEcsRQXvCxRKtgjExRCUUQt9kcPpaacAx6So5zfAJADYxNyt2w3oSnmfZ_iR1ibIcTu-_OrNtmNaWfabQ658DEV97FxNL-Hwb6G7qV4jP2m_cOLy21n1sHmY3LgTZvdyU6n5Hl59bS4oauH69vFfEUtYzBQ4wRnGpwXUvHacYWeSQta18iUtMZrMWONNKacgRox1NpI33AB3teAjE_J2X-vTTHn5HzVp3F62lYI1e8H1e4D_gPZjU81</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Fluid Approximation–based Analysis for Mode-switching Population Dynamics</title><source>ACM Digital Library Complete</source><creator>Piho, Paul ; Hillston, Jane</creator><creatorcontrib>Piho, Paul ; Hillston, Jane</creatorcontrib><description>Fluid approximation results provide powerful methods for scalable analysis of models of population dynamics with large numbers of discrete states and have seen wide-ranging applications in modelling biological and computer-based systems and model checking. However, the applicability of these methods relies on assumptions that are not easily met in a number of modelling scenarios. This article focuses on one particular class of scenarios in which rapid information propagation in the system is considered. In particular, we study the case where changes in population dynamics are induced by information about the environment being communicated between components of the population via broadcast communication. We see how existing hybrid fluid limit results, resulting in piecewise deterministic Markov processes, can be adapted to such models. Finally, we propose heuristic constructions for extracting the mean behaviour from the resulting approximations without the need to simulate individual trajectories.</description><identifier>ISSN: 1049-3301</identifier><identifier>EISSN: 1558-1195</identifier><identifier>DOI: 10.1145/3441680</identifier><language>eng</language><ispartof>ACM transactions on modeling and computer simulation, 2021-04, Vol.31 (2), p.1-26</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c220t-ae53290ef5683be381f26c099b1286caf9572d6aa47080ef199a6fd350ffb0123</cites><orcidid>0000-0002-4072-1000 ; 0000-0003-4914-9255</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27923,27924</link.rule.ids></links><search><creatorcontrib>Piho, Paul</creatorcontrib><creatorcontrib>Hillston, Jane</creatorcontrib><title>Fluid Approximation–based Analysis for Mode-switching Population Dynamics</title><title>ACM transactions on modeling and computer simulation</title><description>Fluid approximation results provide powerful methods for scalable analysis of models of population dynamics with large numbers of discrete states and have seen wide-ranging applications in modelling biological and computer-based systems and model checking. However, the applicability of these methods relies on assumptions that are not easily met in a number of modelling scenarios. This article focuses on one particular class of scenarios in which rapid information propagation in the system is considered. In particular, we study the case where changes in population dynamics are induced by information about the environment being communicated between components of the population via broadcast communication. We see how existing hybrid fluid limit results, resulting in piecewise deterministic Markov processes, can be adapted to such models. Finally, we propose heuristic constructions for extracting the mean behaviour from the resulting approximations without the need to simulate individual trajectories.</description><issn>1049-3301</issn><issn>1558-1195</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNotkEFOwzAURC0EEqUgrpAdK8P_duzay6pQQBTBAtaR49hglMaRnQq64w7ckJMQoKsZjZ5GoyHkFOEcsRQXvCxRKtgjExRCUUQt9kcPpaacAx6So5zfAJADYxNyt2w3oSnmfZ_iR1ibIcTu-_OrNtmNaWfabQ658DEV97FxNL-Hwb6G7qV4jP2m_cOLy21n1sHmY3LgTZvdyU6n5Hl59bS4oauH69vFfEUtYzBQ4wRnGpwXUvHacYWeSQta18iUtMZrMWONNKacgRox1NpI33AB3teAjE_J2X-vTTHn5HzVp3F62lYI1e8H1e4D_gPZjU81</recordid><startdate>20210401</startdate><enddate>20210401</enddate><creator>Piho, Paul</creator><creator>Hillston, Jane</creator><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-4072-1000</orcidid><orcidid>https://orcid.org/0000-0003-4914-9255</orcidid></search><sort><creationdate>20210401</creationdate><title>Fluid Approximation–based Analysis for Mode-switching Population Dynamics</title><author>Piho, Paul ; Hillston, Jane</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c220t-ae53290ef5683be381f26c099b1286caf9572d6aa47080ef199a6fd350ffb0123</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Piho, Paul</creatorcontrib><creatorcontrib>Hillston, Jane</creatorcontrib><collection>CrossRef</collection><jtitle>ACM transactions on modeling and computer simulation</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Piho, Paul</au><au>Hillston, Jane</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Fluid Approximation–based Analysis for Mode-switching Population Dynamics</atitle><jtitle>ACM transactions on modeling and computer simulation</jtitle><date>2021-04-01</date><risdate>2021</risdate><volume>31</volume><issue>2</issue><spage>1</spage><epage>26</epage><pages>1-26</pages><issn>1049-3301</issn><eissn>1558-1195</eissn><abstract>Fluid approximation results provide powerful methods for scalable analysis of models of population dynamics with large numbers of discrete states and have seen wide-ranging applications in modelling biological and computer-based systems and model checking. However, the applicability of these methods relies on assumptions that are not easily met in a number of modelling scenarios. This article focuses on one particular class of scenarios in which rapid information propagation in the system is considered. In particular, we study the case where changes in population dynamics are induced by information about the environment being communicated between components of the population via broadcast communication. We see how existing hybrid fluid limit results, resulting in piecewise deterministic Markov processes, can be adapted to such models. Finally, we propose heuristic constructions for extracting the mean behaviour from the resulting approximations without the need to simulate individual trajectories.</abstract><doi>10.1145/3441680</doi><tpages>26</tpages><orcidid>https://orcid.org/0000-0002-4072-1000</orcidid><orcidid>https://orcid.org/0000-0003-4914-9255</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1049-3301 |
ispartof | ACM transactions on modeling and computer simulation, 2021-04, Vol.31 (2), p.1-26 |
issn | 1049-3301 1558-1195 |
language | eng |
recordid | cdi_crossref_primary_10_1145_3441680 |
source | ACM Digital Library Complete |
title | Fluid Approximation–based Analysis for Mode-switching Population Dynamics |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T14%3A01%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Fluid%20Approximation%E2%80%93based%20Analysis%20for%20Mode-switching%20Population%20Dynamics&rft.jtitle=ACM%20transactions%20on%20modeling%20and%20computer%20simulation&rft.au=Piho,%20Paul&rft.date=2021-04-01&rft.volume=31&rft.issue=2&rft.spage=1&rft.epage=26&rft.pages=1-26&rft.issn=1049-3301&rft.eissn=1558-1195&rft_id=info:doi/10.1145/3441680&rft_dat=%3Ccrossref%3E10_1145_3441680%3C/crossref%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |