Fluid Approximation–based Analysis for Mode-switching Population Dynamics

Fluid approximation results provide powerful methods for scalable analysis of models of population dynamics with large numbers of discrete states and have seen wide-ranging applications in modelling biological and computer-based systems and model checking. However, the applicability of these methods...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACM transactions on modeling and computer simulation 2021-04, Vol.31 (2), p.1-26
Hauptverfasser: Piho, Paul, Hillston, Jane
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 26
container_issue 2
container_start_page 1
container_title ACM transactions on modeling and computer simulation
container_volume 31
creator Piho, Paul
Hillston, Jane
description Fluid approximation results provide powerful methods for scalable analysis of models of population dynamics with large numbers of discrete states and have seen wide-ranging applications in modelling biological and computer-based systems and model checking. However, the applicability of these methods relies on assumptions that are not easily met in a number of modelling scenarios. This article focuses on one particular class of scenarios in which rapid information propagation in the system is considered. In particular, we study the case where changes in population dynamics are induced by information about the environment being communicated between components of the population via broadcast communication. We see how existing hybrid fluid limit results, resulting in piecewise deterministic Markov processes, can be adapted to such models. Finally, we propose heuristic constructions for extracting the mean behaviour from the resulting approximations without the need to simulate individual trajectories.
doi_str_mv 10.1145/3441680
format Article
fullrecord <record><control><sourceid>crossref</sourceid><recordid>TN_cdi_crossref_primary_10_1145_3441680</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1145_3441680</sourcerecordid><originalsourceid>FETCH-LOGICAL-c220t-ae53290ef5683be381f26c099b1286caf9572d6aa47080ef199a6fd350ffb0123</originalsourceid><addsrcrecordid>eNotkEFOwzAURC0EEqUgrpAdK8P_duzay6pQQBTBAtaR49hglMaRnQq64w7ckJMQoKsZjZ5GoyHkFOEcsRQXvCxRKtgjExRCUUQt9kcPpaacAx6So5zfAJADYxNyt2w3oSnmfZ_iR1ibIcTu-_OrNtmNaWfabQ658DEV97FxNL-Hwb6G7qV4jP2m_cOLy21n1sHmY3LgTZvdyU6n5Hl59bS4oauH69vFfEUtYzBQ4wRnGpwXUvHacYWeSQta18iUtMZrMWONNKacgRox1NpI33AB3teAjE_J2X-vTTHn5HzVp3F62lYI1e8H1e4D_gPZjU81</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Fluid Approximation–based Analysis for Mode-switching Population Dynamics</title><source>ACM Digital Library Complete</source><creator>Piho, Paul ; Hillston, Jane</creator><creatorcontrib>Piho, Paul ; Hillston, Jane</creatorcontrib><description>Fluid approximation results provide powerful methods for scalable analysis of models of population dynamics with large numbers of discrete states and have seen wide-ranging applications in modelling biological and computer-based systems and model checking. However, the applicability of these methods relies on assumptions that are not easily met in a number of modelling scenarios. This article focuses on one particular class of scenarios in which rapid information propagation in the system is considered. In particular, we study the case where changes in population dynamics are induced by information about the environment being communicated between components of the population via broadcast communication. We see how existing hybrid fluid limit results, resulting in piecewise deterministic Markov processes, can be adapted to such models. Finally, we propose heuristic constructions for extracting the mean behaviour from the resulting approximations without the need to simulate individual trajectories.</description><identifier>ISSN: 1049-3301</identifier><identifier>EISSN: 1558-1195</identifier><identifier>DOI: 10.1145/3441680</identifier><language>eng</language><ispartof>ACM transactions on modeling and computer simulation, 2021-04, Vol.31 (2), p.1-26</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c220t-ae53290ef5683be381f26c099b1286caf9572d6aa47080ef199a6fd350ffb0123</cites><orcidid>0000-0002-4072-1000 ; 0000-0003-4914-9255</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27923,27924</link.rule.ids></links><search><creatorcontrib>Piho, Paul</creatorcontrib><creatorcontrib>Hillston, Jane</creatorcontrib><title>Fluid Approximation–based Analysis for Mode-switching Population Dynamics</title><title>ACM transactions on modeling and computer simulation</title><description>Fluid approximation results provide powerful methods for scalable analysis of models of population dynamics with large numbers of discrete states and have seen wide-ranging applications in modelling biological and computer-based systems and model checking. However, the applicability of these methods relies on assumptions that are not easily met in a number of modelling scenarios. This article focuses on one particular class of scenarios in which rapid information propagation in the system is considered. In particular, we study the case where changes in population dynamics are induced by information about the environment being communicated between components of the population via broadcast communication. We see how existing hybrid fluid limit results, resulting in piecewise deterministic Markov processes, can be adapted to such models. Finally, we propose heuristic constructions for extracting the mean behaviour from the resulting approximations without the need to simulate individual trajectories.</description><issn>1049-3301</issn><issn>1558-1195</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNotkEFOwzAURC0EEqUgrpAdK8P_duzay6pQQBTBAtaR49hglMaRnQq64w7ckJMQoKsZjZ5GoyHkFOEcsRQXvCxRKtgjExRCUUQt9kcPpaacAx6So5zfAJADYxNyt2w3oSnmfZ_iR1ibIcTu-_OrNtmNaWfabQ658DEV97FxNL-Hwb6G7qV4jP2m_cOLy21n1sHmY3LgTZvdyU6n5Hl59bS4oauH69vFfEUtYzBQ4wRnGpwXUvHacYWeSQta18iUtMZrMWONNKacgRox1NpI33AB3teAjE_J2X-vTTHn5HzVp3F62lYI1e8H1e4D_gPZjU81</recordid><startdate>20210401</startdate><enddate>20210401</enddate><creator>Piho, Paul</creator><creator>Hillston, Jane</creator><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-4072-1000</orcidid><orcidid>https://orcid.org/0000-0003-4914-9255</orcidid></search><sort><creationdate>20210401</creationdate><title>Fluid Approximation–based Analysis for Mode-switching Population Dynamics</title><author>Piho, Paul ; Hillston, Jane</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c220t-ae53290ef5683be381f26c099b1286caf9572d6aa47080ef199a6fd350ffb0123</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Piho, Paul</creatorcontrib><creatorcontrib>Hillston, Jane</creatorcontrib><collection>CrossRef</collection><jtitle>ACM transactions on modeling and computer simulation</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Piho, Paul</au><au>Hillston, Jane</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Fluid Approximation–based Analysis for Mode-switching Population Dynamics</atitle><jtitle>ACM transactions on modeling and computer simulation</jtitle><date>2021-04-01</date><risdate>2021</risdate><volume>31</volume><issue>2</issue><spage>1</spage><epage>26</epage><pages>1-26</pages><issn>1049-3301</issn><eissn>1558-1195</eissn><abstract>Fluid approximation results provide powerful methods for scalable analysis of models of population dynamics with large numbers of discrete states and have seen wide-ranging applications in modelling biological and computer-based systems and model checking. However, the applicability of these methods relies on assumptions that are not easily met in a number of modelling scenarios. This article focuses on one particular class of scenarios in which rapid information propagation in the system is considered. In particular, we study the case where changes in population dynamics are induced by information about the environment being communicated between components of the population via broadcast communication. We see how existing hybrid fluid limit results, resulting in piecewise deterministic Markov processes, can be adapted to such models. Finally, we propose heuristic constructions for extracting the mean behaviour from the resulting approximations without the need to simulate individual trajectories.</abstract><doi>10.1145/3441680</doi><tpages>26</tpages><orcidid>https://orcid.org/0000-0002-4072-1000</orcidid><orcidid>https://orcid.org/0000-0003-4914-9255</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1049-3301
ispartof ACM transactions on modeling and computer simulation, 2021-04, Vol.31 (2), p.1-26
issn 1049-3301
1558-1195
language eng
recordid cdi_crossref_primary_10_1145_3441680
source ACM Digital Library Complete
title Fluid Approximation–based Analysis for Mode-switching Population Dynamics
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T14%3A01%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Fluid%20Approximation%E2%80%93based%20Analysis%20for%20Mode-switching%20Population%20Dynamics&rft.jtitle=ACM%20transactions%20on%20modeling%20and%20computer%20simulation&rft.au=Piho,%20Paul&rft.date=2021-04-01&rft.volume=31&rft.issue=2&rft.spage=1&rft.epage=26&rft.pages=1-26&rft.issn=1049-3301&rft.eissn=1558-1195&rft_id=info:doi/10.1145/3441680&rft_dat=%3Ccrossref%3E10_1145_3441680%3C/crossref%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true