A Network Analysis of Twitter Interactions by Members of the U.S. Congress

Usage of Twitter by politicians has become more prevalent in recent years, with a goal of influencing the electorate and public perception. We collect, explore, and analyze over 12 years of public Twitter interactions of U.S. senators and representatives. Using community detection algorithms on thes...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACM transactions on social computing 2021-03, Vol.4 (1), p.1-22
Hauptverfasser: Chamberlain, Joshua M., Spezzano, Francesca, Kettler, Jaclyn J., Dit, Bogdan
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 22
container_issue 1
container_start_page 1
container_title ACM transactions on social computing
container_volume 4
creator Chamberlain, Joshua M.
Spezzano, Francesca
Kettler, Jaclyn J.
Dit, Bogdan
description Usage of Twitter by politicians has become more prevalent in recent years, with a goal of influencing the electorate and public perception. We collect, explore, and analyze over 12 years of public Twitter interactions of U.S. senators and representatives. Using community detection algorithms on these interaction networks, and without considering the content of the tweets, we are able to infer the political affiliation of each member of Congress with up to 98.8% accuracy in the House and 94.1% accuracy in the Senate. In addition, we define two metrics that can determine the political ideology of members of Congress achieving a very high Spearman’s rank correlation of 0.86 with the existing DW-NOMINATE score from the field of political science. Finally, we expand our structural analysis to intra-party factions and found evidence that some factions act on Twitter more cohesively than others, suggesting an increasing risk of an echo chamber effect when promoting their political agenda.
doi_str_mv 10.1145/3439827
format Article
fullrecord <record><control><sourceid>crossref</sourceid><recordid>TN_cdi_crossref_primary_10_1145_3439827</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1145_3439827</sourcerecordid><originalsourceid>FETCH-LOGICAL-c707-e6fcdde092dd55c2e4d10ef778bfff8a179e6410d176f8b284a62f58dec67ad03</originalsourceid><addsrcrecordid>eNo9kE1LxDAYhIMouKyLfyE3T61v0jRJj6X4sbLqwXouafJGq7uNJIWl_95VF2GYmcMwh4eQSwY5Y6K8LkRRaa5OyIILWWVKc3n635k-J6uUPgCAHyQUW5CHmj7htA_xk9aj2c5pSDR42u6HacJI1-PBjZ2GMCbaz_QRdz3G38n0jvQ1f8lpE8a3iCldkDNvtglXx1yS9vambe6zzfPduqk3mVWgMpTeOodQcefK0nIUjgF6pXTvvdeGqQqlYOCYkl73XAsjuS-1QyuVcVAsydXfrY0hpYi--4rDzsS5Y9D9QOiOEIpvfM9N0w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>A Network Analysis of Twitter Interactions by Members of the U.S. Congress</title><source>ACM Digital Library Complete</source><creator>Chamberlain, Joshua M. ; Spezzano, Francesca ; Kettler, Jaclyn J. ; Dit, Bogdan</creator><creatorcontrib>Chamberlain, Joshua M. ; Spezzano, Francesca ; Kettler, Jaclyn J. ; Dit, Bogdan</creatorcontrib><description>Usage of Twitter by politicians has become more prevalent in recent years, with a goal of influencing the electorate and public perception. We collect, explore, and analyze over 12 years of public Twitter interactions of U.S. senators and representatives. Using community detection algorithms on these interaction networks, and without considering the content of the tweets, we are able to infer the political affiliation of each member of Congress with up to 98.8% accuracy in the House and 94.1% accuracy in the Senate. In addition, we define two metrics that can determine the political ideology of members of Congress achieving a very high Spearman’s rank correlation of 0.86 with the existing DW-NOMINATE score from the field of political science. Finally, we expand our structural analysis to intra-party factions and found evidence that some factions act on Twitter more cohesively than others, suggesting an increasing risk of an echo chamber effect when promoting their political agenda.</description><identifier>ISSN: 2469-7818</identifier><identifier>EISSN: 2469-7826</identifier><identifier>DOI: 10.1145/3439827</identifier><language>eng</language><ispartof>ACM transactions on social computing, 2021-03, Vol.4 (1), p.1-22</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c707-e6fcdde092dd55c2e4d10ef778bfff8a179e6410d176f8b284a62f58dec67ad03</citedby><cites>FETCH-LOGICAL-c707-e6fcdde092dd55c2e4d10ef778bfff8a179e6410d176f8b284a62f58dec67ad03</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Chamberlain, Joshua M.</creatorcontrib><creatorcontrib>Spezzano, Francesca</creatorcontrib><creatorcontrib>Kettler, Jaclyn J.</creatorcontrib><creatorcontrib>Dit, Bogdan</creatorcontrib><title>A Network Analysis of Twitter Interactions by Members of the U.S. Congress</title><title>ACM transactions on social computing</title><description>Usage of Twitter by politicians has become more prevalent in recent years, with a goal of influencing the electorate and public perception. We collect, explore, and analyze over 12 years of public Twitter interactions of U.S. senators and representatives. Using community detection algorithms on these interaction networks, and without considering the content of the tweets, we are able to infer the political affiliation of each member of Congress with up to 98.8% accuracy in the House and 94.1% accuracy in the Senate. In addition, we define two metrics that can determine the political ideology of members of Congress achieving a very high Spearman’s rank correlation of 0.86 with the existing DW-NOMINATE score from the field of political science. Finally, we expand our structural analysis to intra-party factions and found evidence that some factions act on Twitter more cohesively than others, suggesting an increasing risk of an echo chamber effect when promoting their political agenda.</description><issn>2469-7818</issn><issn>2469-7826</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNo9kE1LxDAYhIMouKyLfyE3T61v0jRJj6X4sbLqwXouafJGq7uNJIWl_95VF2GYmcMwh4eQSwY5Y6K8LkRRaa5OyIILWWVKc3n635k-J6uUPgCAHyQUW5CHmj7htA_xk9aj2c5pSDR42u6HacJI1-PBjZ2GMCbaz_QRdz3G38n0jvQ1f8lpE8a3iCldkDNvtglXx1yS9vambe6zzfPduqk3mVWgMpTeOodQcefK0nIUjgF6pXTvvdeGqQqlYOCYkl73XAsjuS-1QyuVcVAsydXfrY0hpYi--4rDzsS5Y9D9QOiOEIpvfM9N0w</recordid><startdate>20210331</startdate><enddate>20210331</enddate><creator>Chamberlain, Joshua M.</creator><creator>Spezzano, Francesca</creator><creator>Kettler, Jaclyn J.</creator><creator>Dit, Bogdan</creator><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20210331</creationdate><title>A Network Analysis of Twitter Interactions by Members of the U.S. Congress</title><author>Chamberlain, Joshua M. ; Spezzano, Francesca ; Kettler, Jaclyn J. ; Dit, Bogdan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c707-e6fcdde092dd55c2e4d10ef778bfff8a179e6410d176f8b284a62f58dec67ad03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chamberlain, Joshua M.</creatorcontrib><creatorcontrib>Spezzano, Francesca</creatorcontrib><creatorcontrib>Kettler, Jaclyn J.</creatorcontrib><creatorcontrib>Dit, Bogdan</creatorcontrib><collection>CrossRef</collection><jtitle>ACM transactions on social computing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chamberlain, Joshua M.</au><au>Spezzano, Francesca</au><au>Kettler, Jaclyn J.</au><au>Dit, Bogdan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Network Analysis of Twitter Interactions by Members of the U.S. Congress</atitle><jtitle>ACM transactions on social computing</jtitle><date>2021-03-31</date><risdate>2021</risdate><volume>4</volume><issue>1</issue><spage>1</spage><epage>22</epage><pages>1-22</pages><issn>2469-7818</issn><eissn>2469-7826</eissn><abstract>Usage of Twitter by politicians has become more prevalent in recent years, with a goal of influencing the electorate and public perception. We collect, explore, and analyze over 12 years of public Twitter interactions of U.S. senators and representatives. Using community detection algorithms on these interaction networks, and without considering the content of the tweets, we are able to infer the political affiliation of each member of Congress with up to 98.8% accuracy in the House and 94.1% accuracy in the Senate. In addition, we define two metrics that can determine the political ideology of members of Congress achieving a very high Spearman’s rank correlation of 0.86 with the existing DW-NOMINATE score from the field of political science. Finally, we expand our structural analysis to intra-party factions and found evidence that some factions act on Twitter more cohesively than others, suggesting an increasing risk of an echo chamber effect when promoting their political agenda.</abstract><doi>10.1145/3439827</doi><tpages>22</tpages></addata></record>
fulltext fulltext
identifier ISSN: 2469-7818
ispartof ACM transactions on social computing, 2021-03, Vol.4 (1), p.1-22
issn 2469-7818
2469-7826
language eng
recordid cdi_crossref_primary_10_1145_3439827
source ACM Digital Library Complete
title A Network Analysis of Twitter Interactions by Members of the U.S. Congress
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-13T22%3A31%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Network%20Analysis%20of%20Twitter%20Interactions%20by%20Members%20of%20the%20U.S.%20Congress&rft.jtitle=ACM%20transactions%20on%20social%20computing&rft.au=Chamberlain,%20Joshua%20M.&rft.date=2021-03-31&rft.volume=4&rft.issue=1&rft.spage=1&rft.epage=22&rft.pages=1-22&rft.issn=2469-7818&rft.eissn=2469-7826&rft_id=info:doi/10.1145/3439827&rft_dat=%3Ccrossref%3E10_1145_3439827%3C/crossref%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true