Optimal Pricing for MHR and λ-regular Distributions
We study the performance of anonymous posted-price selling mechanisms for a standard Bayesian auction setting, where n bidders have i.i.d. valuations for a single item. We show that for the natural class of Monotone Hazard Rate (MHR) distributions, offering the same, take-it-or-leave-it price to all...
Gespeichert in:
Veröffentlicht in: | ACM transactions on economics and computation 2021-03, Vol.9 (1), p.1-28 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 28 |
---|---|
container_issue | 1 |
container_start_page | 1 |
container_title | ACM transactions on economics and computation |
container_volume | 9 |
creator | Giannakopoulos, Yiannis Poças, Diogo Zhu, Keyu |
description | We study the performance of anonymous posted-price selling mechanisms for a standard Bayesian auction setting, where
n
bidders have i.i.d. valuations for a single item. We show that for the natural class of Monotone Hazard Rate (MHR) distributions, offering the same, take-it-or-leave-it price to all bidders can achieve an (asymptotically) optimal revenue. In particular, the approximation ratio is shown to be 1+
O
(ln ln
n
/ ln
n
), matched by a tight lower bound for the case of exponential distributions. This improves upon the previously best-known upper bound of
e
/(
e
−1)≈ 1.58 for the slightly more general class of regular distributions. In the worst case (over
n
), we still show a global upper bound of 1.35. We give a simple, closed-form description of our prices, which, interestingly enough, relies only on minimal knowledge of the prior distribution, namely, just the expectation of its second-highest order statistic.
Furthermore, we extend our techniques to handle the more general class of λ-regular distributions that interpolate between MHR (λ =0) and regular (λ =1). Our anonymous pricing rule now results in an asymptotic approximation ratio that ranges smoothly, with respect to λ, from 1 (MHR distributions) to
e
/(
e
−1) (regular distributions). Finally, we explicitly give a class of continuous distributions that provide matching lower bounds, for every λ. |
doi_str_mv | 10.1145/3434423 |
format | Article |
fullrecord | <record><control><sourceid>crossref</sourceid><recordid>TN_cdi_crossref_primary_10_1145_3434423</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1145_3434423</sourcerecordid><originalsourceid>FETCH-LOGICAL-c225t-9ae02dc4e7b2a21c7f26832171e848a02af4c549c7bba61fa2395d703ac33ff73</originalsourceid><addsrcrecordid>eNo9j81KAzEUhYMoWNriK2TnajS5N5lkllJ_KlRaRNfDnUxSIuNMSaYLn8138JlssXg256w-zsfYlRQ3Uip9iwqVAjxjE5ClKSxaPP_fRl-yec4f4hALutLlhKn1boyf1PFNii72Wx6GxF-Wr5z6lv98F8lv9x0lfh_zmGKzH-PQ5xm7CNRlPz_1lL0_PrwtlsVq_fS8uFsVDkCPRUVeQOuUNw0QSGcClBZBGumtsiSAgnJaVc40DZUyEGClWyOQHGIIBqfs-o_r0pBz8qHepcPZ9FVLUR9965Mv_gLIf0aF</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Optimal Pricing for MHR and λ-regular Distributions</title><source>ACM Digital Library</source><creator>Giannakopoulos, Yiannis ; Poças, Diogo ; Zhu, Keyu</creator><creatorcontrib>Giannakopoulos, Yiannis ; Poças, Diogo ; Zhu, Keyu</creatorcontrib><description>We study the performance of anonymous posted-price selling mechanisms for a standard Bayesian auction setting, where
n
bidders have i.i.d. valuations for a single item. We show that for the natural class of Monotone Hazard Rate (MHR) distributions, offering the same, take-it-or-leave-it price to all bidders can achieve an (asymptotically) optimal revenue. In particular, the approximation ratio is shown to be 1+
O
(ln ln
n
/ ln
n
), matched by a tight lower bound for the case of exponential distributions. This improves upon the previously best-known upper bound of
e
/(
e
−1)≈ 1.58 for the slightly more general class of regular distributions. In the worst case (over
n
), we still show a global upper bound of 1.35. We give a simple, closed-form description of our prices, which, interestingly enough, relies only on minimal knowledge of the prior distribution, namely, just the expectation of its second-highest order statistic.
Furthermore, we extend our techniques to handle the more general class of λ-regular distributions that interpolate between MHR (λ =0) and regular (λ =1). Our anonymous pricing rule now results in an asymptotic approximation ratio that ranges smoothly, with respect to λ, from 1 (MHR distributions) to
e
/(
e
−1) (regular distributions). Finally, we explicitly give a class of continuous distributions that provide matching lower bounds, for every λ.</description><identifier>ISSN: 2167-8375</identifier><identifier>EISSN: 2167-8383</identifier><identifier>DOI: 10.1145/3434423</identifier><language>eng</language><ispartof>ACM transactions on economics and computation, 2021-03, Vol.9 (1), p.1-28</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c225t-9ae02dc4e7b2a21c7f26832171e848a02af4c549c7bba61fa2395d703ac33ff73</citedby><cites>FETCH-LOGICAL-c225t-9ae02dc4e7b2a21c7f26832171e848a02af4c549c7bba61fa2395d703ac33ff73</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,778,782,27907,27908</link.rule.ids></links><search><creatorcontrib>Giannakopoulos, Yiannis</creatorcontrib><creatorcontrib>Poças, Diogo</creatorcontrib><creatorcontrib>Zhu, Keyu</creatorcontrib><title>Optimal Pricing for MHR and λ-regular Distributions</title><title>ACM transactions on economics and computation</title><description>We study the performance of anonymous posted-price selling mechanisms for a standard Bayesian auction setting, where
n
bidders have i.i.d. valuations for a single item. We show that for the natural class of Monotone Hazard Rate (MHR) distributions, offering the same, take-it-or-leave-it price to all bidders can achieve an (asymptotically) optimal revenue. In particular, the approximation ratio is shown to be 1+
O
(ln ln
n
/ ln
n
), matched by a tight lower bound for the case of exponential distributions. This improves upon the previously best-known upper bound of
e
/(
e
−1)≈ 1.58 for the slightly more general class of regular distributions. In the worst case (over
n
), we still show a global upper bound of 1.35. We give a simple, closed-form description of our prices, which, interestingly enough, relies only on minimal knowledge of the prior distribution, namely, just the expectation of its second-highest order statistic.
Furthermore, we extend our techniques to handle the more general class of λ-regular distributions that interpolate between MHR (λ =0) and regular (λ =1). Our anonymous pricing rule now results in an asymptotic approximation ratio that ranges smoothly, with respect to λ, from 1 (MHR distributions) to
e
/(
e
−1) (regular distributions). Finally, we explicitly give a class of continuous distributions that provide matching lower bounds, for every λ.</description><issn>2167-8375</issn><issn>2167-8383</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNo9j81KAzEUhYMoWNriK2TnajS5N5lkllJ_KlRaRNfDnUxSIuNMSaYLn8138JlssXg256w-zsfYlRQ3Uip9iwqVAjxjE5ClKSxaPP_fRl-yec4f4hALutLlhKn1boyf1PFNii72Wx6GxF-Wr5z6lv98F8lv9x0lfh_zmGKzH-PQ5xm7CNRlPz_1lL0_PrwtlsVq_fS8uFsVDkCPRUVeQOuUNw0QSGcClBZBGumtsiSAgnJaVc40DZUyEGClWyOQHGIIBqfs-o_r0pBz8qHepcPZ9FVLUR9965Mv_gLIf0aF</recordid><startdate>20210301</startdate><enddate>20210301</enddate><creator>Giannakopoulos, Yiannis</creator><creator>Poças, Diogo</creator><creator>Zhu, Keyu</creator><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20210301</creationdate><title>Optimal Pricing for MHR and λ-regular Distributions</title><author>Giannakopoulos, Yiannis ; Poças, Diogo ; Zhu, Keyu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c225t-9ae02dc4e7b2a21c7f26832171e848a02af4c549c7bba61fa2395d703ac33ff73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Giannakopoulos, Yiannis</creatorcontrib><creatorcontrib>Poças, Diogo</creatorcontrib><creatorcontrib>Zhu, Keyu</creatorcontrib><collection>CrossRef</collection><jtitle>ACM transactions on economics and computation</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Giannakopoulos, Yiannis</au><au>Poças, Diogo</au><au>Zhu, Keyu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Optimal Pricing for MHR and λ-regular Distributions</atitle><jtitle>ACM transactions on economics and computation</jtitle><date>2021-03-01</date><risdate>2021</risdate><volume>9</volume><issue>1</issue><spage>1</spage><epage>28</epage><pages>1-28</pages><issn>2167-8375</issn><eissn>2167-8383</eissn><abstract>We study the performance of anonymous posted-price selling mechanisms for a standard Bayesian auction setting, where
n
bidders have i.i.d. valuations for a single item. We show that for the natural class of Monotone Hazard Rate (MHR) distributions, offering the same, take-it-or-leave-it price to all bidders can achieve an (asymptotically) optimal revenue. In particular, the approximation ratio is shown to be 1+
O
(ln ln
n
/ ln
n
), matched by a tight lower bound for the case of exponential distributions. This improves upon the previously best-known upper bound of
e
/(
e
−1)≈ 1.58 for the slightly more general class of regular distributions. In the worst case (over
n
), we still show a global upper bound of 1.35. We give a simple, closed-form description of our prices, which, interestingly enough, relies only on minimal knowledge of the prior distribution, namely, just the expectation of its second-highest order statistic.
Furthermore, we extend our techniques to handle the more general class of λ-regular distributions that interpolate between MHR (λ =0) and regular (λ =1). Our anonymous pricing rule now results in an asymptotic approximation ratio that ranges smoothly, with respect to λ, from 1 (MHR distributions) to
e
/(
e
−1) (regular distributions). Finally, we explicitly give a class of continuous distributions that provide matching lower bounds, for every λ.</abstract><doi>10.1145/3434423</doi><tpages>28</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2167-8375 |
ispartof | ACM transactions on economics and computation, 2021-03, Vol.9 (1), p.1-28 |
issn | 2167-8375 2167-8383 |
language | eng |
recordid | cdi_crossref_primary_10_1145_3434423 |
source | ACM Digital Library |
title | Optimal Pricing for MHR and λ-regular Distributions |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T20%3A35%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Optimal%20Pricing%20for%20MHR%20and%20%CE%BB-regular%20Distributions&rft.jtitle=ACM%20transactions%20on%20economics%20and%20computation&rft.au=Giannakopoulos,%20Yiannis&rft.date=2021-03-01&rft.volume=9&rft.issue=1&rft.spage=1&rft.epage=28&rft.pages=1-28&rft.issn=2167-8375&rft.eissn=2167-8383&rft_id=info:doi/10.1145/3434423&rft_dat=%3Ccrossref%3E10_1145_3434423%3C/crossref%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |