My Team Will Go On: Differentiating High and Low Viability Teams through Team Interaction
Understanding team viability --- a team's capacity for sustained and future success --- is essential for building effective teams. In this study, we aggregate features drawn from the organizational behavior literature to train a viability classification model over a dataset of 669 10-minute tex...
Gespeichert in:
Veröffentlicht in: | Proceedings of the ACM on human-computer interaction 2021-01, Vol.4 (CSCW3), p.1-27, Article 230 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 27 |
---|---|
container_issue | CSCW3 |
container_start_page | 1 |
container_title | Proceedings of the ACM on human-computer interaction |
container_volume | 4 |
creator | Cao, Hancheng Yang, Vivian Chen, Victor Lee, Yu Jin Stone, Lydia Diarrassouba, N'godjigui Junior Whiting, Mark E. Bernstein, Michael S. |
description | Understanding team viability --- a team's capacity for sustained and future success --- is essential for building effective teams. In this study, we aggregate features drawn from the organizational behavior literature to train a viability classification model over a dataset of 669 10-minute text conversations of online teams. We train classifiers to identify teams at the top decile (most viable teams), 50th percentile (above a median split), and bottom decile (least viable teams), then characterize the attributes of teams at each of these viability levels. We find that a lasso regression model achieves an accuracy of .74--.92 AUC ROC under different thresholds of classifying viability scores. From these models, we identify the use of exclusive language such as 'but' and 'except', and the use of second person pronouns, as the most predictive features for detecting the most viable teams, suggesting that active engagement with others' ideas is a crucial signal of a viable team. Only a small fraction of the 10-minute discussion, as little as 70 seconds, is required for predicting the viability of team interaction. This work suggests opportunities for teams to assess, track, and visualize their own viability in real time as they collaborate. |
doi_str_mv | 10.1145/3432929 |
format | Article |
fullrecord | <record><control><sourceid>acm_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1145_3432929</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3432929</sourcerecordid><originalsourceid>FETCH-LOGICAL-a519-6b646010ae504eb9e55c44abf50c50557cd1d04470723cdd11da7acfaf3e608c3</originalsourceid><addsrcrecordid>eNpNj79LA0EQhZegYIhBsLS6LtXpzO7MbbaUEKOQkOYg5TG3PyDhzshtlf_eSKJYvQfv44On1APCMyLxiyGjnXYjNdZsTQlI-uZfv1PTnA8AgHMGdnqsHjenoo7SF7t91xWrY7H9vFe3Sbocp9ecqPptWS_ey_V29bF4XZfC6MqqragCBIkMFFsXmT2RtInBn91sfcAARBasNj4ExCBWfJJkYgVzbyZqdtH64ZjzEFPzNex7GU4NQvNzprmeOZNPF1J8_wf9jt_240BM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>My Team Will Go On: Differentiating High and Low Viability Teams through Team Interaction</title><source>ACM Digital Library Complete</source><creator>Cao, Hancheng ; Yang, Vivian ; Chen, Victor ; Lee, Yu Jin ; Stone, Lydia ; Diarrassouba, N'godjigui Junior ; Whiting, Mark E. ; Bernstein, Michael S.</creator><creatorcontrib>Cao, Hancheng ; Yang, Vivian ; Chen, Victor ; Lee, Yu Jin ; Stone, Lydia ; Diarrassouba, N'godjigui Junior ; Whiting, Mark E. ; Bernstein, Michael S.</creatorcontrib><description>Understanding team viability --- a team's capacity for sustained and future success --- is essential for building effective teams. In this study, we aggregate features drawn from the organizational behavior literature to train a viability classification model over a dataset of 669 10-minute text conversations of online teams. We train classifiers to identify teams at the top decile (most viable teams), 50th percentile (above a median split), and bottom decile (least viable teams), then characterize the attributes of teams at each of these viability levels. We find that a lasso regression model achieves an accuracy of .74--.92 AUC ROC under different thresholds of classifying viability scores. From these models, we identify the use of exclusive language such as 'but' and 'except', and the use of second person pronouns, as the most predictive features for detecting the most viable teams, suggesting that active engagement with others' ideas is a crucial signal of a viable team. Only a small fraction of the 10-minute discussion, as little as 70 seconds, is required for predicting the viability of team interaction. This work suggests opportunities for teams to assess, track, and visualize their own viability in real time as they collaborate.</description><identifier>ISSN: 2573-0142</identifier><identifier>EISSN: 2573-0142</identifier><identifier>DOI: 10.1145/3432929</identifier><language>eng</language><publisher>New York, NY, USA: ACM</publisher><subject>Collaborative and social computing ; Empirical studies in collaborative and social computing ; Human-centered computing</subject><ispartof>Proceedings of the ACM on human-computer interaction, 2021-01, Vol.4 (CSCW3), p.1-27, Article 230</ispartof><rights>ACM</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-a519-6b646010ae504eb9e55c44abf50c50557cd1d04470723cdd11da7acfaf3e608c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://dl.acm.org/doi/pdf/10.1145/3432929$$EPDF$$P50$$Gacm$$H</linktopdf><link.rule.ids>314,780,784,2282,27924,27925,40196,76228</link.rule.ids></links><search><creatorcontrib>Cao, Hancheng</creatorcontrib><creatorcontrib>Yang, Vivian</creatorcontrib><creatorcontrib>Chen, Victor</creatorcontrib><creatorcontrib>Lee, Yu Jin</creatorcontrib><creatorcontrib>Stone, Lydia</creatorcontrib><creatorcontrib>Diarrassouba, N'godjigui Junior</creatorcontrib><creatorcontrib>Whiting, Mark E.</creatorcontrib><creatorcontrib>Bernstein, Michael S.</creatorcontrib><title>My Team Will Go On: Differentiating High and Low Viability Teams through Team Interaction</title><title>Proceedings of the ACM on human-computer interaction</title><addtitle>ACM PACMHCI</addtitle><description>Understanding team viability --- a team's capacity for sustained and future success --- is essential for building effective teams. In this study, we aggregate features drawn from the organizational behavior literature to train a viability classification model over a dataset of 669 10-minute text conversations of online teams. We train classifiers to identify teams at the top decile (most viable teams), 50th percentile (above a median split), and bottom decile (least viable teams), then characterize the attributes of teams at each of these viability levels. We find that a lasso regression model achieves an accuracy of .74--.92 AUC ROC under different thresholds of classifying viability scores. From these models, we identify the use of exclusive language such as 'but' and 'except', and the use of second person pronouns, as the most predictive features for detecting the most viable teams, suggesting that active engagement with others' ideas is a crucial signal of a viable team. Only a small fraction of the 10-minute discussion, as little as 70 seconds, is required for predicting the viability of team interaction. This work suggests opportunities for teams to assess, track, and visualize their own viability in real time as they collaborate.</description><subject>Collaborative and social computing</subject><subject>Empirical studies in collaborative and social computing</subject><subject>Human-centered computing</subject><issn>2573-0142</issn><issn>2573-0142</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNpNj79LA0EQhZegYIhBsLS6LtXpzO7MbbaUEKOQkOYg5TG3PyDhzshtlf_eSKJYvQfv44On1APCMyLxiyGjnXYjNdZsTQlI-uZfv1PTnA8AgHMGdnqsHjenoo7SF7t91xWrY7H9vFe3Sbocp9ecqPptWS_ey_V29bF4XZfC6MqqragCBIkMFFsXmT2RtInBn91sfcAARBasNj4ExCBWfJJkYgVzbyZqdtH64ZjzEFPzNex7GU4NQvNzprmeOZNPF1J8_wf9jt_240BM</recordid><startdate>20210105</startdate><enddate>20210105</enddate><creator>Cao, Hancheng</creator><creator>Yang, Vivian</creator><creator>Chen, Victor</creator><creator>Lee, Yu Jin</creator><creator>Stone, Lydia</creator><creator>Diarrassouba, N'godjigui Junior</creator><creator>Whiting, Mark E.</creator><creator>Bernstein, Michael S.</creator><general>ACM</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20210105</creationdate><title>My Team Will Go On</title><author>Cao, Hancheng ; Yang, Vivian ; Chen, Victor ; Lee, Yu Jin ; Stone, Lydia ; Diarrassouba, N'godjigui Junior ; Whiting, Mark E. ; Bernstein, Michael S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a519-6b646010ae504eb9e55c44abf50c50557cd1d04470723cdd11da7acfaf3e608c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Collaborative and social computing</topic><topic>Empirical studies in collaborative and social computing</topic><topic>Human-centered computing</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cao, Hancheng</creatorcontrib><creatorcontrib>Yang, Vivian</creatorcontrib><creatorcontrib>Chen, Victor</creatorcontrib><creatorcontrib>Lee, Yu Jin</creatorcontrib><creatorcontrib>Stone, Lydia</creatorcontrib><creatorcontrib>Diarrassouba, N'godjigui Junior</creatorcontrib><creatorcontrib>Whiting, Mark E.</creatorcontrib><creatorcontrib>Bernstein, Michael S.</creatorcontrib><collection>CrossRef</collection><jtitle>Proceedings of the ACM on human-computer interaction</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cao, Hancheng</au><au>Yang, Vivian</au><au>Chen, Victor</au><au>Lee, Yu Jin</au><au>Stone, Lydia</au><au>Diarrassouba, N'godjigui Junior</au><au>Whiting, Mark E.</au><au>Bernstein, Michael S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>My Team Will Go On: Differentiating High and Low Viability Teams through Team Interaction</atitle><jtitle>Proceedings of the ACM on human-computer interaction</jtitle><stitle>ACM PACMHCI</stitle><date>2021-01-05</date><risdate>2021</risdate><volume>4</volume><issue>CSCW3</issue><spage>1</spage><epage>27</epage><pages>1-27</pages><artnum>230</artnum><issn>2573-0142</issn><eissn>2573-0142</eissn><abstract>Understanding team viability --- a team's capacity for sustained and future success --- is essential for building effective teams. In this study, we aggregate features drawn from the organizational behavior literature to train a viability classification model over a dataset of 669 10-minute text conversations of online teams. We train classifiers to identify teams at the top decile (most viable teams), 50th percentile (above a median split), and bottom decile (least viable teams), then characterize the attributes of teams at each of these viability levels. We find that a lasso regression model achieves an accuracy of .74--.92 AUC ROC under different thresholds of classifying viability scores. From these models, we identify the use of exclusive language such as 'but' and 'except', and the use of second person pronouns, as the most predictive features for detecting the most viable teams, suggesting that active engagement with others' ideas is a crucial signal of a viable team. Only a small fraction of the 10-minute discussion, as little as 70 seconds, is required for predicting the viability of team interaction. This work suggests opportunities for teams to assess, track, and visualize their own viability in real time as they collaborate.</abstract><cop>New York, NY, USA</cop><pub>ACM</pub><doi>10.1145/3432929</doi><tpages>27</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2573-0142 |
ispartof | Proceedings of the ACM on human-computer interaction, 2021-01, Vol.4 (CSCW3), p.1-27, Article 230 |
issn | 2573-0142 2573-0142 |
language | eng |
recordid | cdi_crossref_primary_10_1145_3432929 |
source | ACM Digital Library Complete |
subjects | Collaborative and social computing Empirical studies in collaborative and social computing Human-centered computing |
title | My Team Will Go On: Differentiating High and Low Viability Teams through Team Interaction |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T03%3A56%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-acm_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=My%20Team%20Will%20Go%20On:%20Differentiating%20High%20and%20Low%20Viability%20Teams%20through%20Team%20Interaction&rft.jtitle=Proceedings%20of%20the%20ACM%20on%20human-computer%20interaction&rft.au=Cao,%20Hancheng&rft.date=2021-01-05&rft.volume=4&rft.issue=CSCW3&rft.spage=1&rft.epage=27&rft.pages=1-27&rft.artnum=230&rft.issn=2573-0142&rft.eissn=2573-0142&rft_id=info:doi/10.1145/3432929&rft_dat=%3Cacm_cross%3E3432929%3C/acm_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |