My Team Will Go On: Differentiating High and Low Viability Teams through Team Interaction

Understanding team viability --- a team's capacity for sustained and future success --- is essential for building effective teams. In this study, we aggregate features drawn from the organizational behavior literature to train a viability classification model over a dataset of 669 10-minute tex...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the ACM on human-computer interaction 2021-01, Vol.4 (CSCW3), p.1-27, Article 230
Hauptverfasser: Cao, Hancheng, Yang, Vivian, Chen, Victor, Lee, Yu Jin, Stone, Lydia, Diarrassouba, N'godjigui Junior, Whiting, Mark E., Bernstein, Michael S.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 27
container_issue CSCW3
container_start_page 1
container_title Proceedings of the ACM on human-computer interaction
container_volume 4
creator Cao, Hancheng
Yang, Vivian
Chen, Victor
Lee, Yu Jin
Stone, Lydia
Diarrassouba, N'godjigui Junior
Whiting, Mark E.
Bernstein, Michael S.
description Understanding team viability --- a team's capacity for sustained and future success --- is essential for building effective teams. In this study, we aggregate features drawn from the organizational behavior literature to train a viability classification model over a dataset of 669 10-minute text conversations of online teams. We train classifiers to identify teams at the top decile (most viable teams), 50th percentile (above a median split), and bottom decile (least viable teams), then characterize the attributes of teams at each of these viability levels. We find that a lasso regression model achieves an accuracy of .74--.92 AUC ROC under different thresholds of classifying viability scores. From these models, we identify the use of exclusive language such as 'but' and 'except', and the use of second person pronouns, as the most predictive features for detecting the most viable teams, suggesting that active engagement with others' ideas is a crucial signal of a viable team. Only a small fraction of the 10-minute discussion, as little as 70 seconds, is required for predicting the viability of team interaction. This work suggests opportunities for teams to assess, track, and visualize their own viability in real time as they collaborate.
doi_str_mv 10.1145/3432929
format Article
fullrecord <record><control><sourceid>acm_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1145_3432929</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3432929</sourcerecordid><originalsourceid>FETCH-LOGICAL-a519-6b646010ae504eb9e55c44abf50c50557cd1d04470723cdd11da7acfaf3e608c3</originalsourceid><addsrcrecordid>eNpNj79LA0EQhZegYIhBsLS6LtXpzO7MbbaUEKOQkOYg5TG3PyDhzshtlf_eSKJYvQfv44On1APCMyLxiyGjnXYjNdZsTQlI-uZfv1PTnA8AgHMGdnqsHjenoo7SF7t91xWrY7H9vFe3Sbocp9ecqPptWS_ey_V29bF4XZfC6MqqragCBIkMFFsXmT2RtInBn91sfcAARBasNj4ExCBWfJJkYgVzbyZqdtH64ZjzEFPzNex7GU4NQvNzprmeOZNPF1J8_wf9jt_240BM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>My Team Will Go On: Differentiating High and Low Viability Teams through Team Interaction</title><source>ACM Digital Library Complete</source><creator>Cao, Hancheng ; Yang, Vivian ; Chen, Victor ; Lee, Yu Jin ; Stone, Lydia ; Diarrassouba, N'godjigui Junior ; Whiting, Mark E. ; Bernstein, Michael S.</creator><creatorcontrib>Cao, Hancheng ; Yang, Vivian ; Chen, Victor ; Lee, Yu Jin ; Stone, Lydia ; Diarrassouba, N'godjigui Junior ; Whiting, Mark E. ; Bernstein, Michael S.</creatorcontrib><description>Understanding team viability --- a team's capacity for sustained and future success --- is essential for building effective teams. In this study, we aggregate features drawn from the organizational behavior literature to train a viability classification model over a dataset of 669 10-minute text conversations of online teams. We train classifiers to identify teams at the top decile (most viable teams), 50th percentile (above a median split), and bottom decile (least viable teams), then characterize the attributes of teams at each of these viability levels. We find that a lasso regression model achieves an accuracy of .74--.92 AUC ROC under different thresholds of classifying viability scores. From these models, we identify the use of exclusive language such as 'but' and 'except', and the use of second person pronouns, as the most predictive features for detecting the most viable teams, suggesting that active engagement with others' ideas is a crucial signal of a viable team. Only a small fraction of the 10-minute discussion, as little as 70 seconds, is required for predicting the viability of team interaction. This work suggests opportunities for teams to assess, track, and visualize their own viability in real time as they collaborate.</description><identifier>ISSN: 2573-0142</identifier><identifier>EISSN: 2573-0142</identifier><identifier>DOI: 10.1145/3432929</identifier><language>eng</language><publisher>New York, NY, USA: ACM</publisher><subject>Collaborative and social computing ; Empirical studies in collaborative and social computing ; Human-centered computing</subject><ispartof>Proceedings of the ACM on human-computer interaction, 2021-01, Vol.4 (CSCW3), p.1-27, Article 230</ispartof><rights>ACM</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-a519-6b646010ae504eb9e55c44abf50c50557cd1d04470723cdd11da7acfaf3e608c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://dl.acm.org/doi/pdf/10.1145/3432929$$EPDF$$P50$$Gacm$$H</linktopdf><link.rule.ids>314,780,784,2282,27924,27925,40196,76228</link.rule.ids></links><search><creatorcontrib>Cao, Hancheng</creatorcontrib><creatorcontrib>Yang, Vivian</creatorcontrib><creatorcontrib>Chen, Victor</creatorcontrib><creatorcontrib>Lee, Yu Jin</creatorcontrib><creatorcontrib>Stone, Lydia</creatorcontrib><creatorcontrib>Diarrassouba, N'godjigui Junior</creatorcontrib><creatorcontrib>Whiting, Mark E.</creatorcontrib><creatorcontrib>Bernstein, Michael S.</creatorcontrib><title>My Team Will Go On: Differentiating High and Low Viability Teams through Team Interaction</title><title>Proceedings of the ACM on human-computer interaction</title><addtitle>ACM PACMHCI</addtitle><description>Understanding team viability --- a team's capacity for sustained and future success --- is essential for building effective teams. In this study, we aggregate features drawn from the organizational behavior literature to train a viability classification model over a dataset of 669 10-minute text conversations of online teams. We train classifiers to identify teams at the top decile (most viable teams), 50th percentile (above a median split), and bottom decile (least viable teams), then characterize the attributes of teams at each of these viability levels. We find that a lasso regression model achieves an accuracy of .74--.92 AUC ROC under different thresholds of classifying viability scores. From these models, we identify the use of exclusive language such as 'but' and 'except', and the use of second person pronouns, as the most predictive features for detecting the most viable teams, suggesting that active engagement with others' ideas is a crucial signal of a viable team. Only a small fraction of the 10-minute discussion, as little as 70 seconds, is required for predicting the viability of team interaction. This work suggests opportunities for teams to assess, track, and visualize their own viability in real time as they collaborate.</description><subject>Collaborative and social computing</subject><subject>Empirical studies in collaborative and social computing</subject><subject>Human-centered computing</subject><issn>2573-0142</issn><issn>2573-0142</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNpNj79LA0EQhZegYIhBsLS6LtXpzO7MbbaUEKOQkOYg5TG3PyDhzshtlf_eSKJYvQfv44On1APCMyLxiyGjnXYjNdZsTQlI-uZfv1PTnA8AgHMGdnqsHjenoo7SF7t91xWrY7H9vFe3Sbocp9ecqPptWS_ey_V29bF4XZfC6MqqragCBIkMFFsXmT2RtInBn91sfcAARBasNj4ExCBWfJJkYgVzbyZqdtH64ZjzEFPzNex7GU4NQvNzprmeOZNPF1J8_wf9jt_240BM</recordid><startdate>20210105</startdate><enddate>20210105</enddate><creator>Cao, Hancheng</creator><creator>Yang, Vivian</creator><creator>Chen, Victor</creator><creator>Lee, Yu Jin</creator><creator>Stone, Lydia</creator><creator>Diarrassouba, N'godjigui Junior</creator><creator>Whiting, Mark E.</creator><creator>Bernstein, Michael S.</creator><general>ACM</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20210105</creationdate><title>My Team Will Go On</title><author>Cao, Hancheng ; Yang, Vivian ; Chen, Victor ; Lee, Yu Jin ; Stone, Lydia ; Diarrassouba, N'godjigui Junior ; Whiting, Mark E. ; Bernstein, Michael S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a519-6b646010ae504eb9e55c44abf50c50557cd1d04470723cdd11da7acfaf3e608c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Collaborative and social computing</topic><topic>Empirical studies in collaborative and social computing</topic><topic>Human-centered computing</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cao, Hancheng</creatorcontrib><creatorcontrib>Yang, Vivian</creatorcontrib><creatorcontrib>Chen, Victor</creatorcontrib><creatorcontrib>Lee, Yu Jin</creatorcontrib><creatorcontrib>Stone, Lydia</creatorcontrib><creatorcontrib>Diarrassouba, N'godjigui Junior</creatorcontrib><creatorcontrib>Whiting, Mark E.</creatorcontrib><creatorcontrib>Bernstein, Michael S.</creatorcontrib><collection>CrossRef</collection><jtitle>Proceedings of the ACM on human-computer interaction</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cao, Hancheng</au><au>Yang, Vivian</au><au>Chen, Victor</au><au>Lee, Yu Jin</au><au>Stone, Lydia</au><au>Diarrassouba, N'godjigui Junior</au><au>Whiting, Mark E.</au><au>Bernstein, Michael S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>My Team Will Go On: Differentiating High and Low Viability Teams through Team Interaction</atitle><jtitle>Proceedings of the ACM on human-computer interaction</jtitle><stitle>ACM PACMHCI</stitle><date>2021-01-05</date><risdate>2021</risdate><volume>4</volume><issue>CSCW3</issue><spage>1</spage><epage>27</epage><pages>1-27</pages><artnum>230</artnum><issn>2573-0142</issn><eissn>2573-0142</eissn><abstract>Understanding team viability --- a team's capacity for sustained and future success --- is essential for building effective teams. In this study, we aggregate features drawn from the organizational behavior literature to train a viability classification model over a dataset of 669 10-minute text conversations of online teams. We train classifiers to identify teams at the top decile (most viable teams), 50th percentile (above a median split), and bottom decile (least viable teams), then characterize the attributes of teams at each of these viability levels. We find that a lasso regression model achieves an accuracy of .74--.92 AUC ROC under different thresholds of classifying viability scores. From these models, we identify the use of exclusive language such as 'but' and 'except', and the use of second person pronouns, as the most predictive features for detecting the most viable teams, suggesting that active engagement with others' ideas is a crucial signal of a viable team. Only a small fraction of the 10-minute discussion, as little as 70 seconds, is required for predicting the viability of team interaction. This work suggests opportunities for teams to assess, track, and visualize their own viability in real time as they collaborate.</abstract><cop>New York, NY, USA</cop><pub>ACM</pub><doi>10.1145/3432929</doi><tpages>27</tpages></addata></record>
fulltext fulltext
identifier ISSN: 2573-0142
ispartof Proceedings of the ACM on human-computer interaction, 2021-01, Vol.4 (CSCW3), p.1-27, Article 230
issn 2573-0142
2573-0142
language eng
recordid cdi_crossref_primary_10_1145_3432929
source ACM Digital Library Complete
subjects Collaborative and social computing
Empirical studies in collaborative and social computing
Human-centered computing
title My Team Will Go On: Differentiating High and Low Viability Teams through Team Interaction
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T03%3A56%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-acm_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=My%20Team%20Will%20Go%20On:%20Differentiating%20High%20and%20Low%20Viability%20Teams%20through%20Team%20Interaction&rft.jtitle=Proceedings%20of%20the%20ACM%20on%20human-computer%20interaction&rft.au=Cao,%20Hancheng&rft.date=2021-01-05&rft.volume=4&rft.issue=CSCW3&rft.spage=1&rft.epage=27&rft.pages=1-27&rft.artnum=230&rft.issn=2573-0142&rft.eissn=2573-0142&rft_id=info:doi/10.1145/3432929&rft_dat=%3Cacm_cross%3E3432929%3C/acm_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true