Single image portrait relighting via explicit multiple reflectance channel modeling
Portrait relighting aims to render a face image under different lighting conditions. Existing methods do not explicitly consider some challenging lighting effects such as specular and shadow, and thus may fail in handling extreme lighting conditions. In this paper, we propose a novel framework that...
Gespeichert in:
Veröffentlicht in: | ACM transactions on graphics 2020-11, Vol.39 (6), p.1-13, Article 220 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 13 |
---|---|
container_issue | 6 |
container_start_page | 1 |
container_title | ACM transactions on graphics |
container_volume | 39 |
creator | Wang, Zhibo Yu, Xin Lu, Ming Wang, Quan Qian, Chen Xu, Feng |
description | Portrait relighting aims to render a face image under different lighting conditions. Existing methods do not explicitly consider some challenging lighting effects such as specular and shadow, and thus may fail in handling extreme lighting conditions. In this paper, we propose a novel framework that explicitly models multiple reflectance channels for single image portrait relighting, including the facial albedo, geometry as well as two lighting effects, i.e., specular and shadow. These channels are finally composed to generate the relit results via deep neural networks. Current datasets do not support learning such multiple reflectance channel modeling. Therefore, we present a large-scale dataset with the ground-truths of the channels, enabling us to train the deep neural networks in a supervised manner. Furthermore, we develop a novel module named Lighting guided Feature Modulation (LFM). In contrast to existing methods which simply incorporate the given lighting in the bottleneck of a network, LFM fuses the lighting by layer-wise feature modulation to deliver more convincing results. Extensive experiments demonstrate that our proposed method achieves better results and is able to generate challenging lighting effects. |
doi_str_mv | 10.1145/3414685.3417824 |
format | Article |
fullrecord | <record><control><sourceid>acm_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1145_3414685_3417824</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3417824</sourcerecordid><originalsourceid>FETCH-LOGICAL-a367t-40955a5f463a7bf3296f77cf741917973434abcf93ef91d241a6568528324a3e3</originalsourceid><addsrcrecordid>eNo9UE1LAzEQDaJgrZ4FT_kDa5OdSbJ7lOIXFDxUz8s0TbaR7HbJrqL_3kirpwfvY5j3GLuW4lZKVAtAibpStxlNVeIJm0mlTGFAV6dsJgyIQoCQ5-xiHN-FEBpRz9h6Hfo2Oh46ah0f9mlKFCaeXAztbsoa_wzE3dcQg8189xGnMGR_cj46O1FvHbc76nsXebff5ljfXrIzT3F0V0ecs7eH-9flU7F6eXxe3q0KAm2mAkWtFCmPGshsPJS19sZYb1DW0tQGEJA21tfgfC23JUrSKjcsKyiRwMGcLQ53bdqPY_6oGVLukb4bKZrfTZrjJs1xk5y4OSTIdv_mP_EHnjVcnQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Single image portrait relighting via explicit multiple reflectance channel modeling</title><source>ACM Digital Library Complete</source><creator>Wang, Zhibo ; Yu, Xin ; Lu, Ming ; Wang, Quan ; Qian, Chen ; Xu, Feng</creator><creatorcontrib>Wang, Zhibo ; Yu, Xin ; Lu, Ming ; Wang, Quan ; Qian, Chen ; Xu, Feng</creatorcontrib><description>Portrait relighting aims to render a face image under different lighting conditions. Existing methods do not explicitly consider some challenging lighting effects such as specular and shadow, and thus may fail in handling extreme lighting conditions. In this paper, we propose a novel framework that explicitly models multiple reflectance channels for single image portrait relighting, including the facial albedo, geometry as well as two lighting effects, i.e., specular and shadow. These channels are finally composed to generate the relit results via deep neural networks. Current datasets do not support learning such multiple reflectance channel modeling. Therefore, we present a large-scale dataset with the ground-truths of the channels, enabling us to train the deep neural networks in a supervised manner. Furthermore, we develop a novel module named Lighting guided Feature Modulation (LFM). In contrast to existing methods which simply incorporate the given lighting in the bottleneck of a network, LFM fuses the lighting by layer-wise feature modulation to deliver more convincing results. Extensive experiments demonstrate that our proposed method achieves better results and is able to generate challenging lighting effects.</description><identifier>ISSN: 0730-0301</identifier><identifier>EISSN: 1557-7368</identifier><identifier>DOI: 10.1145/3414685.3417824</identifier><language>eng</language><publisher>New York, NY, USA: ACM</publisher><subject>Artificial intelligence ; Computational photography ; Computer graphics ; Computer vision ; Computing methodologies ; Image and video acquisition ; Image manipulation ; Image-based rendering ; Machine learning ; Machine learning approaches ; Neural networks</subject><ispartof>ACM transactions on graphics, 2020-11, Vol.39 (6), p.1-13, Article 220</ispartof><rights>ACM</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a367t-40955a5f463a7bf3296f77cf741917973434abcf93ef91d241a6568528324a3e3</citedby><cites>FETCH-LOGICAL-a367t-40955a5f463a7bf3296f77cf741917973434abcf93ef91d241a6568528324a3e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://dl.acm.org/doi/pdf/10.1145/3414685.3417824$$EPDF$$P50$$Gacm$$H</linktopdf><link.rule.ids>314,777,781,2276,27905,27906,40177,75977</link.rule.ids></links><search><creatorcontrib>Wang, Zhibo</creatorcontrib><creatorcontrib>Yu, Xin</creatorcontrib><creatorcontrib>Lu, Ming</creatorcontrib><creatorcontrib>Wang, Quan</creatorcontrib><creatorcontrib>Qian, Chen</creatorcontrib><creatorcontrib>Xu, Feng</creatorcontrib><title>Single image portrait relighting via explicit multiple reflectance channel modeling</title><title>ACM transactions on graphics</title><addtitle>ACM TOG</addtitle><description>Portrait relighting aims to render a face image under different lighting conditions. Existing methods do not explicitly consider some challenging lighting effects such as specular and shadow, and thus may fail in handling extreme lighting conditions. In this paper, we propose a novel framework that explicitly models multiple reflectance channels for single image portrait relighting, including the facial albedo, geometry as well as two lighting effects, i.e., specular and shadow. These channels are finally composed to generate the relit results via deep neural networks. Current datasets do not support learning such multiple reflectance channel modeling. Therefore, we present a large-scale dataset with the ground-truths of the channels, enabling us to train the deep neural networks in a supervised manner. Furthermore, we develop a novel module named Lighting guided Feature Modulation (LFM). In contrast to existing methods which simply incorporate the given lighting in the bottleneck of a network, LFM fuses the lighting by layer-wise feature modulation to deliver more convincing results. Extensive experiments demonstrate that our proposed method achieves better results and is able to generate challenging lighting effects.</description><subject>Artificial intelligence</subject><subject>Computational photography</subject><subject>Computer graphics</subject><subject>Computer vision</subject><subject>Computing methodologies</subject><subject>Image and video acquisition</subject><subject>Image manipulation</subject><subject>Image-based rendering</subject><subject>Machine learning</subject><subject>Machine learning approaches</subject><subject>Neural networks</subject><issn>0730-0301</issn><issn>1557-7368</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNo9UE1LAzEQDaJgrZ4FT_kDa5OdSbJ7lOIXFDxUz8s0TbaR7HbJrqL_3kirpwfvY5j3GLuW4lZKVAtAibpStxlNVeIJm0mlTGFAV6dsJgyIQoCQ5-xiHN-FEBpRz9h6Hfo2Oh46ah0f9mlKFCaeXAztbsoa_wzE3dcQg8189xGnMGR_cj46O1FvHbc76nsXebff5ljfXrIzT3F0V0ecs7eH-9flU7F6eXxe3q0KAm2mAkWtFCmPGshsPJS19sZYb1DW0tQGEJA21tfgfC23JUrSKjcsKyiRwMGcLQ53bdqPY_6oGVLukb4bKZrfTZrjJs1xk5y4OSTIdv_mP_EHnjVcnQ</recordid><startdate>20201126</startdate><enddate>20201126</enddate><creator>Wang, Zhibo</creator><creator>Yu, Xin</creator><creator>Lu, Ming</creator><creator>Wang, Quan</creator><creator>Qian, Chen</creator><creator>Xu, Feng</creator><general>ACM</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20201126</creationdate><title>Single image portrait relighting via explicit multiple reflectance channel modeling</title><author>Wang, Zhibo ; Yu, Xin ; Lu, Ming ; Wang, Quan ; Qian, Chen ; Xu, Feng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a367t-40955a5f463a7bf3296f77cf741917973434abcf93ef91d241a6568528324a3e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Artificial intelligence</topic><topic>Computational photography</topic><topic>Computer graphics</topic><topic>Computer vision</topic><topic>Computing methodologies</topic><topic>Image and video acquisition</topic><topic>Image manipulation</topic><topic>Image-based rendering</topic><topic>Machine learning</topic><topic>Machine learning approaches</topic><topic>Neural networks</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Zhibo</creatorcontrib><creatorcontrib>Yu, Xin</creatorcontrib><creatorcontrib>Lu, Ming</creatorcontrib><creatorcontrib>Wang, Quan</creatorcontrib><creatorcontrib>Qian, Chen</creatorcontrib><creatorcontrib>Xu, Feng</creatorcontrib><collection>CrossRef</collection><jtitle>ACM transactions on graphics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Zhibo</au><au>Yu, Xin</au><au>Lu, Ming</au><au>Wang, Quan</au><au>Qian, Chen</au><au>Xu, Feng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Single image portrait relighting via explicit multiple reflectance channel modeling</atitle><jtitle>ACM transactions on graphics</jtitle><stitle>ACM TOG</stitle><date>2020-11-26</date><risdate>2020</risdate><volume>39</volume><issue>6</issue><spage>1</spage><epage>13</epage><pages>1-13</pages><artnum>220</artnum><issn>0730-0301</issn><eissn>1557-7368</eissn><abstract>Portrait relighting aims to render a face image under different lighting conditions. Existing methods do not explicitly consider some challenging lighting effects such as specular and shadow, and thus may fail in handling extreme lighting conditions. In this paper, we propose a novel framework that explicitly models multiple reflectance channels for single image portrait relighting, including the facial albedo, geometry as well as two lighting effects, i.e., specular and shadow. These channels are finally composed to generate the relit results via deep neural networks. Current datasets do not support learning such multiple reflectance channel modeling. Therefore, we present a large-scale dataset with the ground-truths of the channels, enabling us to train the deep neural networks in a supervised manner. Furthermore, we develop a novel module named Lighting guided Feature Modulation (LFM). In contrast to existing methods which simply incorporate the given lighting in the bottleneck of a network, LFM fuses the lighting by layer-wise feature modulation to deliver more convincing results. Extensive experiments demonstrate that our proposed method achieves better results and is able to generate challenging lighting effects.</abstract><cop>New York, NY, USA</cop><pub>ACM</pub><doi>10.1145/3414685.3417824</doi><tpages>13</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0730-0301 |
ispartof | ACM transactions on graphics, 2020-11, Vol.39 (6), p.1-13, Article 220 |
issn | 0730-0301 1557-7368 |
language | eng |
recordid | cdi_crossref_primary_10_1145_3414685_3417824 |
source | ACM Digital Library Complete |
subjects | Artificial intelligence Computational photography Computer graphics Computer vision Computing methodologies Image and video acquisition Image manipulation Image-based rendering Machine learning Machine learning approaches Neural networks |
title | Single image portrait relighting via explicit multiple reflectance channel modeling |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T12%3A30%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-acm_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Single%20image%20portrait%20relighting%20via%20explicit%20multiple%20reflectance%20channel%20modeling&rft.jtitle=ACM%20transactions%20on%20graphics&rft.au=Wang,%20Zhibo&rft.date=2020-11-26&rft.volume=39&rft.issue=6&rft.spage=1&rft.epage=13&rft.pages=1-13&rft.artnum=220&rft.issn=0730-0301&rft.eissn=1557-7368&rft_id=info:doi/10.1145/3414685.3417824&rft_dat=%3Cacm_cross%3E3417824%3C/acm_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |