Single image portrait relighting via explicit multiple reflectance channel modeling

Portrait relighting aims to render a face image under different lighting conditions. Existing methods do not explicitly consider some challenging lighting effects such as specular and shadow, and thus may fail in handling extreme lighting conditions. In this paper, we propose a novel framework that...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACM transactions on graphics 2020-11, Vol.39 (6), p.1-13, Article 220
Hauptverfasser: Wang, Zhibo, Yu, Xin, Lu, Ming, Wang, Quan, Qian, Chen, Xu, Feng
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 13
container_issue 6
container_start_page 1
container_title ACM transactions on graphics
container_volume 39
creator Wang, Zhibo
Yu, Xin
Lu, Ming
Wang, Quan
Qian, Chen
Xu, Feng
description Portrait relighting aims to render a face image under different lighting conditions. Existing methods do not explicitly consider some challenging lighting effects such as specular and shadow, and thus may fail in handling extreme lighting conditions. In this paper, we propose a novel framework that explicitly models multiple reflectance channels for single image portrait relighting, including the facial albedo, geometry as well as two lighting effects, i.e., specular and shadow. These channels are finally composed to generate the relit results via deep neural networks. Current datasets do not support learning such multiple reflectance channel modeling. Therefore, we present a large-scale dataset with the ground-truths of the channels, enabling us to train the deep neural networks in a supervised manner. Furthermore, we develop a novel module named Lighting guided Feature Modulation (LFM). In contrast to existing methods which simply incorporate the given lighting in the bottleneck of a network, LFM fuses the lighting by layer-wise feature modulation to deliver more convincing results. Extensive experiments demonstrate that our proposed method achieves better results and is able to generate challenging lighting effects.
doi_str_mv 10.1145/3414685.3417824
format Article
fullrecord <record><control><sourceid>acm_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1145_3414685_3417824</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3417824</sourcerecordid><originalsourceid>FETCH-LOGICAL-a367t-40955a5f463a7bf3296f77cf741917973434abcf93ef91d241a6568528324a3e3</originalsourceid><addsrcrecordid>eNo9UE1LAzEQDaJgrZ4FT_kDa5OdSbJ7lOIXFDxUz8s0TbaR7HbJrqL_3kirpwfvY5j3GLuW4lZKVAtAibpStxlNVeIJm0mlTGFAV6dsJgyIQoCQ5-xiHN-FEBpRz9h6Hfo2Oh46ah0f9mlKFCaeXAztbsoa_wzE3dcQg8189xGnMGR_cj46O1FvHbc76nsXebff5ljfXrIzT3F0V0ecs7eH-9flU7F6eXxe3q0KAm2mAkWtFCmPGshsPJS19sZYb1DW0tQGEJA21tfgfC23JUrSKjcsKyiRwMGcLQ53bdqPY_6oGVLukb4bKZrfTZrjJs1xk5y4OSTIdv_mP_EHnjVcnQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Single image portrait relighting via explicit multiple reflectance channel modeling</title><source>ACM Digital Library Complete</source><creator>Wang, Zhibo ; Yu, Xin ; Lu, Ming ; Wang, Quan ; Qian, Chen ; Xu, Feng</creator><creatorcontrib>Wang, Zhibo ; Yu, Xin ; Lu, Ming ; Wang, Quan ; Qian, Chen ; Xu, Feng</creatorcontrib><description>Portrait relighting aims to render a face image under different lighting conditions. Existing methods do not explicitly consider some challenging lighting effects such as specular and shadow, and thus may fail in handling extreme lighting conditions. In this paper, we propose a novel framework that explicitly models multiple reflectance channels for single image portrait relighting, including the facial albedo, geometry as well as two lighting effects, i.e., specular and shadow. These channels are finally composed to generate the relit results via deep neural networks. Current datasets do not support learning such multiple reflectance channel modeling. Therefore, we present a large-scale dataset with the ground-truths of the channels, enabling us to train the deep neural networks in a supervised manner. Furthermore, we develop a novel module named Lighting guided Feature Modulation (LFM). In contrast to existing methods which simply incorporate the given lighting in the bottleneck of a network, LFM fuses the lighting by layer-wise feature modulation to deliver more convincing results. Extensive experiments demonstrate that our proposed method achieves better results and is able to generate challenging lighting effects.</description><identifier>ISSN: 0730-0301</identifier><identifier>EISSN: 1557-7368</identifier><identifier>DOI: 10.1145/3414685.3417824</identifier><language>eng</language><publisher>New York, NY, USA: ACM</publisher><subject>Artificial intelligence ; Computational photography ; Computer graphics ; Computer vision ; Computing methodologies ; Image and video acquisition ; Image manipulation ; Image-based rendering ; Machine learning ; Machine learning approaches ; Neural networks</subject><ispartof>ACM transactions on graphics, 2020-11, Vol.39 (6), p.1-13, Article 220</ispartof><rights>ACM</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a367t-40955a5f463a7bf3296f77cf741917973434abcf93ef91d241a6568528324a3e3</citedby><cites>FETCH-LOGICAL-a367t-40955a5f463a7bf3296f77cf741917973434abcf93ef91d241a6568528324a3e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://dl.acm.org/doi/pdf/10.1145/3414685.3417824$$EPDF$$P50$$Gacm$$H</linktopdf><link.rule.ids>314,777,781,2276,27905,27906,40177,75977</link.rule.ids></links><search><creatorcontrib>Wang, Zhibo</creatorcontrib><creatorcontrib>Yu, Xin</creatorcontrib><creatorcontrib>Lu, Ming</creatorcontrib><creatorcontrib>Wang, Quan</creatorcontrib><creatorcontrib>Qian, Chen</creatorcontrib><creatorcontrib>Xu, Feng</creatorcontrib><title>Single image portrait relighting via explicit multiple reflectance channel modeling</title><title>ACM transactions on graphics</title><addtitle>ACM TOG</addtitle><description>Portrait relighting aims to render a face image under different lighting conditions. Existing methods do not explicitly consider some challenging lighting effects such as specular and shadow, and thus may fail in handling extreme lighting conditions. In this paper, we propose a novel framework that explicitly models multiple reflectance channels for single image portrait relighting, including the facial albedo, geometry as well as two lighting effects, i.e., specular and shadow. These channels are finally composed to generate the relit results via deep neural networks. Current datasets do not support learning such multiple reflectance channel modeling. Therefore, we present a large-scale dataset with the ground-truths of the channels, enabling us to train the deep neural networks in a supervised manner. Furthermore, we develop a novel module named Lighting guided Feature Modulation (LFM). In contrast to existing methods which simply incorporate the given lighting in the bottleneck of a network, LFM fuses the lighting by layer-wise feature modulation to deliver more convincing results. Extensive experiments demonstrate that our proposed method achieves better results and is able to generate challenging lighting effects.</description><subject>Artificial intelligence</subject><subject>Computational photography</subject><subject>Computer graphics</subject><subject>Computer vision</subject><subject>Computing methodologies</subject><subject>Image and video acquisition</subject><subject>Image manipulation</subject><subject>Image-based rendering</subject><subject>Machine learning</subject><subject>Machine learning approaches</subject><subject>Neural networks</subject><issn>0730-0301</issn><issn>1557-7368</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNo9UE1LAzEQDaJgrZ4FT_kDa5OdSbJ7lOIXFDxUz8s0TbaR7HbJrqL_3kirpwfvY5j3GLuW4lZKVAtAibpStxlNVeIJm0mlTGFAV6dsJgyIQoCQ5-xiHN-FEBpRz9h6Hfo2Oh46ah0f9mlKFCaeXAztbsoa_wzE3dcQg8189xGnMGR_cj46O1FvHbc76nsXebff5ljfXrIzT3F0V0ecs7eH-9flU7F6eXxe3q0KAm2mAkWtFCmPGshsPJS19sZYb1DW0tQGEJA21tfgfC23JUrSKjcsKyiRwMGcLQ53bdqPY_6oGVLukb4bKZrfTZrjJs1xk5y4OSTIdv_mP_EHnjVcnQ</recordid><startdate>20201126</startdate><enddate>20201126</enddate><creator>Wang, Zhibo</creator><creator>Yu, Xin</creator><creator>Lu, Ming</creator><creator>Wang, Quan</creator><creator>Qian, Chen</creator><creator>Xu, Feng</creator><general>ACM</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20201126</creationdate><title>Single image portrait relighting via explicit multiple reflectance channel modeling</title><author>Wang, Zhibo ; Yu, Xin ; Lu, Ming ; Wang, Quan ; Qian, Chen ; Xu, Feng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a367t-40955a5f463a7bf3296f77cf741917973434abcf93ef91d241a6568528324a3e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Artificial intelligence</topic><topic>Computational photography</topic><topic>Computer graphics</topic><topic>Computer vision</topic><topic>Computing methodologies</topic><topic>Image and video acquisition</topic><topic>Image manipulation</topic><topic>Image-based rendering</topic><topic>Machine learning</topic><topic>Machine learning approaches</topic><topic>Neural networks</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Zhibo</creatorcontrib><creatorcontrib>Yu, Xin</creatorcontrib><creatorcontrib>Lu, Ming</creatorcontrib><creatorcontrib>Wang, Quan</creatorcontrib><creatorcontrib>Qian, Chen</creatorcontrib><creatorcontrib>Xu, Feng</creatorcontrib><collection>CrossRef</collection><jtitle>ACM transactions on graphics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Zhibo</au><au>Yu, Xin</au><au>Lu, Ming</au><au>Wang, Quan</au><au>Qian, Chen</au><au>Xu, Feng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Single image portrait relighting via explicit multiple reflectance channel modeling</atitle><jtitle>ACM transactions on graphics</jtitle><stitle>ACM TOG</stitle><date>2020-11-26</date><risdate>2020</risdate><volume>39</volume><issue>6</issue><spage>1</spage><epage>13</epage><pages>1-13</pages><artnum>220</artnum><issn>0730-0301</issn><eissn>1557-7368</eissn><abstract>Portrait relighting aims to render a face image under different lighting conditions. Existing methods do not explicitly consider some challenging lighting effects such as specular and shadow, and thus may fail in handling extreme lighting conditions. In this paper, we propose a novel framework that explicitly models multiple reflectance channels for single image portrait relighting, including the facial albedo, geometry as well as two lighting effects, i.e., specular and shadow. These channels are finally composed to generate the relit results via deep neural networks. Current datasets do not support learning such multiple reflectance channel modeling. Therefore, we present a large-scale dataset with the ground-truths of the channels, enabling us to train the deep neural networks in a supervised manner. Furthermore, we develop a novel module named Lighting guided Feature Modulation (LFM). In contrast to existing methods which simply incorporate the given lighting in the bottleneck of a network, LFM fuses the lighting by layer-wise feature modulation to deliver more convincing results. Extensive experiments demonstrate that our proposed method achieves better results and is able to generate challenging lighting effects.</abstract><cop>New York, NY, USA</cop><pub>ACM</pub><doi>10.1145/3414685.3417824</doi><tpages>13</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0730-0301
ispartof ACM transactions on graphics, 2020-11, Vol.39 (6), p.1-13, Article 220
issn 0730-0301
1557-7368
language eng
recordid cdi_crossref_primary_10_1145_3414685_3417824
source ACM Digital Library Complete
subjects Artificial intelligence
Computational photography
Computer graphics
Computer vision
Computing methodologies
Image and video acquisition
Image manipulation
Image-based rendering
Machine learning
Machine learning approaches
Neural networks
title Single image portrait relighting via explicit multiple reflectance channel modeling
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T12%3A30%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-acm_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Single%20image%20portrait%20relighting%20via%20explicit%20multiple%20reflectance%20channel%20modeling&rft.jtitle=ACM%20transactions%20on%20graphics&rft.au=Wang,%20Zhibo&rft.date=2020-11-26&rft.volume=39&rft.issue=6&rft.spage=1&rft.epage=13&rft.pages=1-13&rft.artnum=220&rft.issn=0730-0301&rft.eissn=1557-7368&rft_id=info:doi/10.1145/3414685.3417824&rft_dat=%3Cacm_cross%3E3417824%3C/acm_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true