DADC: A Novel Duty-cycling Scheme for IEEE 802.15.4 Cluster-tree-based IoT Applications

The IEEE 802.15.4 standard is one of the widely adopted specifications for realizing different applications of the Internet of Things. It defines several physical layer options and Medium Access Control (MAC) sub-layer for devices with low-power operating at low data rates. As devices implementing t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACM transactions on Internet technology 2022-05, Vol.22 (2), p.1-26
Hauptverfasser: Choudhury, Nikumani, Matam, Rakesh, Mukherjee, Mithun, Lloret, Jaime
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The IEEE 802.15.4 standard is one of the widely adopted specifications for realizing different applications of the Internet of Things. It defines several physical layer options and Medium Access Control (MAC) sub-layer for devices with low-power operating at low data rates. As devices implementing this standard are primarily battery-powered, minimizing their power consumption is a significant concern. Duty-cycling is one such power conserving mechanism that allows a device to schedule its active and inactive radio periods effectively, thus preventing energy drain due to idle listening. The standard specifies two parameters, beacon order and superframe order, which define the active and inactive period of a device. However, it does not specify a duty-cycling scheme to adapt these parameters for varying network conditions. Existing works in this direction are either based on superframe occupation ratio or buffer/queue length of devices. In this article, the particular limitations of both the approaches mentioned above are presented. Later, a novel duty-cycling mechanism based on MAC parameters is proposed. Also, we analyze the role of synchronization schemes in achieving efficient duty-cycles in synchronized cluster-tree network topologies. A Markov model has also been developed for the MAC protocol to estimate the delay and energy consumption during frame transmission.
ISSN:1533-5399
1557-6051
DOI:10.1145/3409487