Improving Collaborative Filtering with Social Influence over Heterogeneous Information Networks

The advent of social networks and activity networks affords us an opportunity of utilizing explicit social information and activity information to improve the quality of recommendation in the presence of data sparsity. In this article, we present a social-influence-based collaborative filtering (SIC...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACM transactions on Internet technology 2020-11, Vol.20 (4), p.1-29
Hauptverfasser: Zhou, Yang, Liu, Ling, Lee, Kisung, Palanisamy, Balaji, Zhang, Qi
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 29
container_issue 4
container_start_page 1
container_title ACM transactions on Internet technology
container_volume 20
creator Zhou, Yang
Liu, Ling
Lee, Kisung
Palanisamy, Balaji
Zhang, Qi
description The advent of social networks and activity networks affords us an opportunity of utilizing explicit social information and activity information to improve the quality of recommendation in the presence of data sparsity. In this article, we present a social-influence-based collaborative filtering (SICF) framework over heterogeneous information networks with three unique features. First, we integrate different types of entities, links, attributes, and activities from rating networks, social networks, and activity networks into a unified social-influence-based collaborative filtering model through the intra-network and inter-network social influence. Second, we propose three social-influence propagation models to capture three kinds of information propagation within heterogeneous information networks: user-based influence propagation on user rating networks, item-based influence propagation on user-rating activity networks, and term-based influence propagation on user-review activity networks, respectively. We compute three kinds of social-influence-based user similarity scores based on three social-influence propagation models, respectively. Third, a unified social-influence-based CF prediction model is proposed to infer rating tastes by incorporating three kinds of social-influence-based similarity measures with different weighting factors. We design a weight-learning algorithm, SICF, to refine the prediction result by quantifying the contribution of each kind of information propagation to make a good balance between prediction accuracy and data sparsity. Extensive evaluation on real datasets demonstrates that SICF outperforms existing representative collaborative filtering methods.
doi_str_mv 10.1145/3397505
format Article
fullrecord <record><control><sourceid>crossref</sourceid><recordid>TN_cdi_crossref_primary_10_1145_3397505</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1145_3397505</sourcerecordid><originalsourceid>FETCH-LOGICAL-c225t-8629da603f23e630204f758b7faa0bba1758cc4dbf3d35a96c5647aa41aecbb3</originalsourceid><addsrcrecordid>eNotUD1PwzAQtRBIlIL4C96YAnYudpoRRZRWqmCge3R2zyXgxJWdtuLf06id3ufd8Bh7lOJZykK9AFSlEuqKTaRSZaaFktcjB8gUVNUtu0vpRwiptIQJa5bdLoZD2295HbxHEyIO7YH4vPUDxdE_tsM3_wq2Rc-XvfN76i3xcKDIF3TqhC31FPZpDEPsTueh5x80HEP8TffsxqFP9HDBKVvP39b1Ilt9vi_r11Vm81wN2Uzn1Qa1AJcDaRC5KFypZqZ0iMIYlCdhbbExDjagsNJW6aJELCSSNQam7On81saQUiTX7GLbYfxrpGjGWZrLLPAP5vFWzg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Improving Collaborative Filtering with Social Influence over Heterogeneous Information Networks</title><source>ACM Digital Library Complete</source><creator>Zhou, Yang ; Liu, Ling ; Lee, Kisung ; Palanisamy, Balaji ; Zhang, Qi</creator><creatorcontrib>Zhou, Yang ; Liu, Ling ; Lee, Kisung ; Palanisamy, Balaji ; Zhang, Qi</creatorcontrib><description>The advent of social networks and activity networks affords us an opportunity of utilizing explicit social information and activity information to improve the quality of recommendation in the presence of data sparsity. In this article, we present a social-influence-based collaborative filtering (SICF) framework over heterogeneous information networks with three unique features. First, we integrate different types of entities, links, attributes, and activities from rating networks, social networks, and activity networks into a unified social-influence-based collaborative filtering model through the intra-network and inter-network social influence. Second, we propose three social-influence propagation models to capture three kinds of information propagation within heterogeneous information networks: user-based influence propagation on user rating networks, item-based influence propagation on user-rating activity networks, and term-based influence propagation on user-review activity networks, respectively. We compute three kinds of social-influence-based user similarity scores based on three social-influence propagation models, respectively. Third, a unified social-influence-based CF prediction model is proposed to infer rating tastes by incorporating three kinds of social-influence-based similarity measures with different weighting factors. We design a weight-learning algorithm, SICF, to refine the prediction result by quantifying the contribution of each kind of information propagation to make a good balance between prediction accuracy and data sparsity. Extensive evaluation on real datasets demonstrates that SICF outperforms existing representative collaborative filtering methods.</description><identifier>ISSN: 1533-5399</identifier><identifier>EISSN: 1557-6051</identifier><identifier>DOI: 10.1145/3397505</identifier><language>eng</language><ispartof>ACM transactions on Internet technology, 2020-11, Vol.20 (4), p.1-29</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c225t-8629da603f23e630204f758b7faa0bba1758cc4dbf3d35a96c5647aa41aecbb3</citedby><cites>FETCH-LOGICAL-c225t-8629da603f23e630204f758b7faa0bba1758cc4dbf3d35a96c5647aa41aecbb3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Zhou, Yang</creatorcontrib><creatorcontrib>Liu, Ling</creatorcontrib><creatorcontrib>Lee, Kisung</creatorcontrib><creatorcontrib>Palanisamy, Balaji</creatorcontrib><creatorcontrib>Zhang, Qi</creatorcontrib><title>Improving Collaborative Filtering with Social Influence over Heterogeneous Information Networks</title><title>ACM transactions on Internet technology</title><description>The advent of social networks and activity networks affords us an opportunity of utilizing explicit social information and activity information to improve the quality of recommendation in the presence of data sparsity. In this article, we present a social-influence-based collaborative filtering (SICF) framework over heterogeneous information networks with three unique features. First, we integrate different types of entities, links, attributes, and activities from rating networks, social networks, and activity networks into a unified social-influence-based collaborative filtering model through the intra-network and inter-network social influence. Second, we propose three social-influence propagation models to capture three kinds of information propagation within heterogeneous information networks: user-based influence propagation on user rating networks, item-based influence propagation on user-rating activity networks, and term-based influence propagation on user-review activity networks, respectively. We compute three kinds of social-influence-based user similarity scores based on three social-influence propagation models, respectively. Third, a unified social-influence-based CF prediction model is proposed to infer rating tastes by incorporating three kinds of social-influence-based similarity measures with different weighting factors. We design a weight-learning algorithm, SICF, to refine the prediction result by quantifying the contribution of each kind of information propagation to make a good balance between prediction accuracy and data sparsity. Extensive evaluation on real datasets demonstrates that SICF outperforms existing representative collaborative filtering methods.</description><issn>1533-5399</issn><issn>1557-6051</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNotUD1PwzAQtRBIlIL4C96YAnYudpoRRZRWqmCge3R2zyXgxJWdtuLf06id3ufd8Bh7lOJZykK9AFSlEuqKTaRSZaaFktcjB8gUVNUtu0vpRwiptIQJa5bdLoZD2295HbxHEyIO7YH4vPUDxdE_tsM3_wq2Rc-XvfN76i3xcKDIF3TqhC31FPZpDEPsTueh5x80HEP8TffsxqFP9HDBKVvP39b1Ilt9vi_r11Vm81wN2Uzn1Qa1AJcDaRC5KFypZqZ0iMIYlCdhbbExDjagsNJW6aJELCSSNQam7On81saQUiTX7GLbYfxrpGjGWZrLLPAP5vFWzg</recordid><startdate>20201101</startdate><enddate>20201101</enddate><creator>Zhou, Yang</creator><creator>Liu, Ling</creator><creator>Lee, Kisung</creator><creator>Palanisamy, Balaji</creator><creator>Zhang, Qi</creator><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20201101</creationdate><title>Improving Collaborative Filtering with Social Influence over Heterogeneous Information Networks</title><author>Zhou, Yang ; Liu, Ling ; Lee, Kisung ; Palanisamy, Balaji ; Zhang, Qi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c225t-8629da603f23e630204f758b7faa0bba1758cc4dbf3d35a96c5647aa41aecbb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhou, Yang</creatorcontrib><creatorcontrib>Liu, Ling</creatorcontrib><creatorcontrib>Lee, Kisung</creatorcontrib><creatorcontrib>Palanisamy, Balaji</creatorcontrib><creatorcontrib>Zhang, Qi</creatorcontrib><collection>CrossRef</collection><jtitle>ACM transactions on Internet technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhou, Yang</au><au>Liu, Ling</au><au>Lee, Kisung</au><au>Palanisamy, Balaji</au><au>Zhang, Qi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Improving Collaborative Filtering with Social Influence over Heterogeneous Information Networks</atitle><jtitle>ACM transactions on Internet technology</jtitle><date>2020-11-01</date><risdate>2020</risdate><volume>20</volume><issue>4</issue><spage>1</spage><epage>29</epage><pages>1-29</pages><issn>1533-5399</issn><eissn>1557-6051</eissn><abstract>The advent of social networks and activity networks affords us an opportunity of utilizing explicit social information and activity information to improve the quality of recommendation in the presence of data sparsity. In this article, we present a social-influence-based collaborative filtering (SICF) framework over heterogeneous information networks with three unique features. First, we integrate different types of entities, links, attributes, and activities from rating networks, social networks, and activity networks into a unified social-influence-based collaborative filtering model through the intra-network and inter-network social influence. Second, we propose three social-influence propagation models to capture three kinds of information propagation within heterogeneous information networks: user-based influence propagation on user rating networks, item-based influence propagation on user-rating activity networks, and term-based influence propagation on user-review activity networks, respectively. We compute three kinds of social-influence-based user similarity scores based on three social-influence propagation models, respectively. Third, a unified social-influence-based CF prediction model is proposed to infer rating tastes by incorporating three kinds of social-influence-based similarity measures with different weighting factors. We design a weight-learning algorithm, SICF, to refine the prediction result by quantifying the contribution of each kind of information propagation to make a good balance between prediction accuracy and data sparsity. Extensive evaluation on real datasets demonstrates that SICF outperforms existing representative collaborative filtering methods.</abstract><doi>10.1145/3397505</doi><tpages>29</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1533-5399
ispartof ACM transactions on Internet technology, 2020-11, Vol.20 (4), p.1-29
issn 1533-5399
1557-6051
language eng
recordid cdi_crossref_primary_10_1145_3397505
source ACM Digital Library Complete
title Improving Collaborative Filtering with Social Influence over Heterogeneous Information Networks
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-10T02%3A12%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Improving%20Collaborative%20Filtering%20with%20Social%20Influence%20over%20Heterogeneous%20Information%20Networks&rft.jtitle=ACM%20transactions%20on%20Internet%20technology&rft.au=Zhou,%20Yang&rft.date=2020-11-01&rft.volume=20&rft.issue=4&rft.spage=1&rft.epage=29&rft.pages=1-29&rft.issn=1533-5399&rft.eissn=1557-6051&rft_id=info:doi/10.1145/3397505&rft_dat=%3Ccrossref%3E10_1145_3397505%3C/crossref%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true