Code Generation for Generally Mapped Finite Elements
Many classical finite elements such as the Argyris and Bell elements have long been absent from high-level PDE software. Building on recent theoretical work, we describe how to implement very general finite-element transformations in FInAT and hence into the Firedrake finite-element system. Numerica...
Gespeichert in:
Veröffentlicht in: | ACM transactions on mathematical software 2019-12, Vol.45 (4), p.1-23 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 23 |
---|---|
container_issue | 4 |
container_start_page | 1 |
container_title | ACM transactions on mathematical software |
container_volume | 45 |
creator | Kirby, Robert C. Mitchell, Lawrence |
description | Many classical finite elements such as the Argyris and Bell elements have long been absent from high-level PDE software. Building on recent theoretical work, we describe how to implement very general finite-element transformations in FInAT and hence into the Firedrake finite-element system. Numerical results evaluate the new elements, comparing them to existing methods for classical problems. For a second-order model problem, we find that new elements give smooth solutions at a mild increase in cost over standard Lagrange elements. For fourth-order problems, however, the newly enabled methods significantly outperform interior penalty formulations. We also give some advanced use cases, solving the nonlinear Cahn-Hilliard equation and some biharmonic eigenvalue problems (including Chladni plates) using
C
1
discretizations. |
doi_str_mv | 10.1145/3361745 |
format | Article |
fullrecord | <record><control><sourceid>crossref</sourceid><recordid>TN_cdi_crossref_primary_10_1145_3361745</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1145_3361745</sourcerecordid><originalsourceid>FETCH-LOGICAL-c225t-5235da8bb7bfccb128795af59120eefc3d20a43cbb75c742b5343f3c819072013</originalsourceid><addsrcrecordid>eNotj0FLxDAQRoMoWHfFv9Cbp-pMJmPao5TdVVjx4p5Lmk6g0m1L0sv-exV7enzw-OAp9YDwhGj4megFreErlSGzLayu-FplAFVZEAPcqruUvgFAo8VMmXrqJD_IKNEt_TTmYYrrHIZL_uHmWbp834_9IvlukLOMS9qqm-CGJPcrN-q0333Vb8Xx8_Bevx4LrzUvBWvizpVta9vgfYu6tBW7wBVqEAmeOg3OkP8V2FujWyZDgXyJFVgNSBv1-P_r45RSlNDMsT-7eGkQmr_YZo2lH7UkROs</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Code Generation for Generally Mapped Finite Elements</title><source>Access via ACM Digital Library</source><creator>Kirby, Robert C. ; Mitchell, Lawrence</creator><creatorcontrib>Kirby, Robert C. ; Mitchell, Lawrence</creatorcontrib><description>Many classical finite elements such as the Argyris and Bell elements have long been absent from high-level PDE software. Building on recent theoretical work, we describe how to implement very general finite-element transformations in FInAT and hence into the Firedrake finite-element system. Numerical results evaluate the new elements, comparing them to existing methods for classical problems. For a second-order model problem, we find that new elements give smooth solutions at a mild increase in cost over standard Lagrange elements. For fourth-order problems, however, the newly enabled methods significantly outperform interior penalty formulations. We also give some advanced use cases, solving the nonlinear Cahn-Hilliard equation and some biharmonic eigenvalue problems (including Chladni plates) using
C
1
discretizations.</description><identifier>ISSN: 0098-3500</identifier><identifier>EISSN: 1557-7295</identifier><identifier>DOI: 10.1145/3361745</identifier><language>eng</language><ispartof>ACM transactions on mathematical software, 2019-12, Vol.45 (4), p.1-23</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c225t-5235da8bb7bfccb128795af59120eefc3d20a43cbb75c742b5343f3c819072013</citedby><cites>FETCH-LOGICAL-c225t-5235da8bb7bfccb128795af59120eefc3d20a43cbb75c742b5343f3c819072013</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Kirby, Robert C.</creatorcontrib><creatorcontrib>Mitchell, Lawrence</creatorcontrib><title>Code Generation for Generally Mapped Finite Elements</title><title>ACM transactions on mathematical software</title><description>Many classical finite elements such as the Argyris and Bell elements have long been absent from high-level PDE software. Building on recent theoretical work, we describe how to implement very general finite-element transformations in FInAT and hence into the Firedrake finite-element system. Numerical results evaluate the new elements, comparing them to existing methods for classical problems. For a second-order model problem, we find that new elements give smooth solutions at a mild increase in cost over standard Lagrange elements. For fourth-order problems, however, the newly enabled methods significantly outperform interior penalty formulations. We also give some advanced use cases, solving the nonlinear Cahn-Hilliard equation and some biharmonic eigenvalue problems (including Chladni plates) using
C
1
discretizations.</description><issn>0098-3500</issn><issn>1557-7295</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNotj0FLxDAQRoMoWHfFv9Cbp-pMJmPao5TdVVjx4p5Lmk6g0m1L0sv-exV7enzw-OAp9YDwhGj4megFreErlSGzLayu-FplAFVZEAPcqruUvgFAo8VMmXrqJD_IKNEt_TTmYYrrHIZL_uHmWbp834_9IvlukLOMS9qqm-CGJPcrN-q0333Vb8Xx8_Bevx4LrzUvBWvizpVta9vgfYu6tBW7wBVqEAmeOg3OkP8V2FujWyZDgXyJFVgNSBv1-P_r45RSlNDMsT-7eGkQmr_YZo2lH7UkROs</recordid><startdate>20191201</startdate><enddate>20191201</enddate><creator>Kirby, Robert C.</creator><creator>Mitchell, Lawrence</creator><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20191201</creationdate><title>Code Generation for Generally Mapped Finite Elements</title><author>Kirby, Robert C. ; Mitchell, Lawrence</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c225t-5235da8bb7bfccb128795af59120eefc3d20a43cbb75c742b5343f3c819072013</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kirby, Robert C.</creatorcontrib><creatorcontrib>Mitchell, Lawrence</creatorcontrib><collection>CrossRef</collection><jtitle>ACM transactions on mathematical software</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kirby, Robert C.</au><au>Mitchell, Lawrence</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Code Generation for Generally Mapped Finite Elements</atitle><jtitle>ACM transactions on mathematical software</jtitle><date>2019-12-01</date><risdate>2019</risdate><volume>45</volume><issue>4</issue><spage>1</spage><epage>23</epage><pages>1-23</pages><issn>0098-3500</issn><eissn>1557-7295</eissn><abstract>Many classical finite elements such as the Argyris and Bell elements have long been absent from high-level PDE software. Building on recent theoretical work, we describe how to implement very general finite-element transformations in FInAT and hence into the Firedrake finite-element system. Numerical results evaluate the new elements, comparing them to existing methods for classical problems. For a second-order model problem, we find that new elements give smooth solutions at a mild increase in cost over standard Lagrange elements. For fourth-order problems, however, the newly enabled methods significantly outperform interior penalty formulations. We also give some advanced use cases, solving the nonlinear Cahn-Hilliard equation and some biharmonic eigenvalue problems (including Chladni plates) using
C
1
discretizations.</abstract><doi>10.1145/3361745</doi><tpages>23</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0098-3500 |
ispartof | ACM transactions on mathematical software, 2019-12, Vol.45 (4), p.1-23 |
issn | 0098-3500 1557-7295 |
language | eng |
recordid | cdi_crossref_primary_10_1145_3361745 |
source | Access via ACM Digital Library |
title | Code Generation for Generally Mapped Finite Elements |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T15%3A02%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Code%20Generation%20for%20Generally%20Mapped%20Finite%20Elements&rft.jtitle=ACM%20transactions%20on%20mathematical%20software&rft.au=Kirby,%20Robert%20C.&rft.date=2019-12-01&rft.volume=45&rft.issue=4&rft.spage=1&rft.epage=23&rft.pages=1-23&rft.issn=0098-3500&rft.eissn=1557-7295&rft_id=info:doi/10.1145/3361745&rft_dat=%3Ccrossref%3E10_1145_3361745%3C/crossref%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |