Dynamic Task-based Intermittent Execution for Energy-harvesting Devices
Energy-neutral Internet of Things requires freeing embedded devices from batteries and powering them from ambient energy. Ambient energy is, however, unpredictable and can only power a device intermittently. Therefore, the paradigm of intermittent execution is to save the program state into non-vola...
Gespeichert in:
Veröffentlicht in: | ACM transactions on sensor networks 2020-02, Vol.16 (1), p.1-24 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 24 |
---|---|
container_issue | 1 |
container_start_page | 1 |
container_title | ACM transactions on sensor networks |
container_volume | 16 |
creator | Majid, Amjad Yousef Donne, Carlo Delle Maeng, Kiwan Colin, Alexei Yildirim, Kasim Sinan Lucia, Brandon Pawełczak, Przemysław |
description | Energy-neutral Internet of Things requires freeing embedded devices from batteries and powering them from ambient energy. Ambient energy is, however, unpredictable and can only power a device intermittently. Therefore, the paradigm of intermittent execution is to save the program state into non-volatile memory frequently to preserve the execution progress. In task-based intermittent programming, the state is saved at task transition. Tasks are fixed at compile time and agnostic to energy conditions. Thus, the state may be saved either more often than necessary or not often enough for the program to progress and terminate. To address these challenges, we propose Coala, an adaptive and efficient task-based execution model. Coala progresses on a multi-task scale when energy permits and preserves the computation progress on a sub-task scale if necessary. Coala’s specialized memory virtualization mechanism ensures that power failures do not leave the program state in non-volatile memory inconsistent. Our evaluation on a real energy-harvesting platform not only shows that Coala reduces runtime by up to 54% as compared to a state-of-the-art system, but also it is able to progress where static systems fail. |
doi_str_mv | 10.1145/3360285 |
format | Article |
fullrecord | <record><control><sourceid>crossref</sourceid><recordid>TN_cdi_crossref_primary_10_1145_3360285</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1145_3360285</sourcerecordid><originalsourceid>FETCH-LOGICAL-c258t-ca6815f63dfedd777d4d4066d4170caa96a95df3ac36de2d344a86ae5bf1189e3</originalsourceid><addsrcrecordid>eNo9j81KAzEYAIMoWKv4Crl5iiabn80epV1roeClnpevyZcadXclicV9e5EWTzOngSHkVvB7IZR-kNLwyuozMhNac6asqc__XTeX5Crnd86lVJLPyGo5DdBHR7eQP9gOMnq6HgqmPpaCQ6HtD7rvEseBhjHRdsC0n9gbpAPmEoc9XeIhOszX5CLAZ8abE-fk9andLp7Z5mW1XjxumKu0LcyBsUIHI31A7-u69sorboxXouYOoDHQaB8kOGk8Vl4qBdYA6l0QwjYo5-Tu2HVpzDlh6L5S7CFNneDd3393-pe_4Q9NoQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Dynamic Task-based Intermittent Execution for Energy-harvesting Devices</title><source>ACM Digital Library Complete</source><creator>Majid, Amjad Yousef ; Donne, Carlo Delle ; Maeng, Kiwan ; Colin, Alexei ; Yildirim, Kasim Sinan ; Lucia, Brandon ; Pawełczak, Przemysław</creator><creatorcontrib>Majid, Amjad Yousef ; Donne, Carlo Delle ; Maeng, Kiwan ; Colin, Alexei ; Yildirim, Kasim Sinan ; Lucia, Brandon ; Pawełczak, Przemysław</creatorcontrib><description>Energy-neutral Internet of Things requires freeing embedded devices from batteries and powering them from ambient energy. Ambient energy is, however, unpredictable and can only power a device intermittently. Therefore, the paradigm of intermittent execution is to save the program state into non-volatile memory frequently to preserve the execution progress. In task-based intermittent programming, the state is saved at task transition. Tasks are fixed at compile time and agnostic to energy conditions. Thus, the state may be saved either more often than necessary or not often enough for the program to progress and terminate. To address these challenges, we propose Coala, an adaptive and efficient task-based execution model. Coala progresses on a multi-task scale when energy permits and preserves the computation progress on a sub-task scale if necessary. Coala’s specialized memory virtualization mechanism ensures that power failures do not leave the program state in non-volatile memory inconsistent. Our evaluation on a real energy-harvesting platform not only shows that Coala reduces runtime by up to 54% as compared to a state-of-the-art system, but also it is able to progress where static systems fail.</description><identifier>ISSN: 1550-4859</identifier><identifier>EISSN: 1550-4867</identifier><identifier>DOI: 10.1145/3360285</identifier><language>eng</language><ispartof>ACM transactions on sensor networks, 2020-02, Vol.16 (1), p.1-24</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c258t-ca6815f63dfedd777d4d4066d4170caa96a95df3ac36de2d344a86ae5bf1189e3</citedby><cites>FETCH-LOGICAL-c258t-ca6815f63dfedd777d4d4066d4170caa96a95df3ac36de2d344a86ae5bf1189e3</cites><orcidid>0000-0001-8225-6410 ; 0000-0003-4130-1099</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Majid, Amjad Yousef</creatorcontrib><creatorcontrib>Donne, Carlo Delle</creatorcontrib><creatorcontrib>Maeng, Kiwan</creatorcontrib><creatorcontrib>Colin, Alexei</creatorcontrib><creatorcontrib>Yildirim, Kasim Sinan</creatorcontrib><creatorcontrib>Lucia, Brandon</creatorcontrib><creatorcontrib>Pawełczak, Przemysław</creatorcontrib><title>Dynamic Task-based Intermittent Execution for Energy-harvesting Devices</title><title>ACM transactions on sensor networks</title><description>Energy-neutral Internet of Things requires freeing embedded devices from batteries and powering them from ambient energy. Ambient energy is, however, unpredictable and can only power a device intermittently. Therefore, the paradigm of intermittent execution is to save the program state into non-volatile memory frequently to preserve the execution progress. In task-based intermittent programming, the state is saved at task transition. Tasks are fixed at compile time and agnostic to energy conditions. Thus, the state may be saved either more often than necessary or not often enough for the program to progress and terminate. To address these challenges, we propose Coala, an adaptive and efficient task-based execution model. Coala progresses on a multi-task scale when energy permits and preserves the computation progress on a sub-task scale if necessary. Coala’s specialized memory virtualization mechanism ensures that power failures do not leave the program state in non-volatile memory inconsistent. Our evaluation on a real energy-harvesting platform not only shows that Coala reduces runtime by up to 54% as compared to a state-of-the-art system, but also it is able to progress where static systems fail.</description><issn>1550-4859</issn><issn>1550-4867</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNo9j81KAzEYAIMoWKv4Crl5iiabn80epV1roeClnpevyZcadXclicV9e5EWTzOngSHkVvB7IZR-kNLwyuozMhNac6asqc__XTeX5Crnd86lVJLPyGo5DdBHR7eQP9gOMnq6HgqmPpaCQ6HtD7rvEseBhjHRdsC0n9gbpAPmEoc9XeIhOszX5CLAZ8abE-fk9andLp7Z5mW1XjxumKu0LcyBsUIHI31A7-u69sorboxXouYOoDHQaB8kOGk8Vl4qBdYA6l0QwjYo5-Tu2HVpzDlh6L5S7CFNneDd3393-pe_4Q9NoQ</recordid><startdate>20200229</startdate><enddate>20200229</enddate><creator>Majid, Amjad Yousef</creator><creator>Donne, Carlo Delle</creator><creator>Maeng, Kiwan</creator><creator>Colin, Alexei</creator><creator>Yildirim, Kasim Sinan</creator><creator>Lucia, Brandon</creator><creator>Pawełczak, Przemysław</creator><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0001-8225-6410</orcidid><orcidid>https://orcid.org/0000-0003-4130-1099</orcidid></search><sort><creationdate>20200229</creationdate><title>Dynamic Task-based Intermittent Execution for Energy-harvesting Devices</title><author>Majid, Amjad Yousef ; Donne, Carlo Delle ; Maeng, Kiwan ; Colin, Alexei ; Yildirim, Kasim Sinan ; Lucia, Brandon ; Pawełczak, Przemysław</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c258t-ca6815f63dfedd777d4d4066d4170caa96a95df3ac36de2d344a86ae5bf1189e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Majid, Amjad Yousef</creatorcontrib><creatorcontrib>Donne, Carlo Delle</creatorcontrib><creatorcontrib>Maeng, Kiwan</creatorcontrib><creatorcontrib>Colin, Alexei</creatorcontrib><creatorcontrib>Yildirim, Kasim Sinan</creatorcontrib><creatorcontrib>Lucia, Brandon</creatorcontrib><creatorcontrib>Pawełczak, Przemysław</creatorcontrib><collection>CrossRef</collection><jtitle>ACM transactions on sensor networks</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Majid, Amjad Yousef</au><au>Donne, Carlo Delle</au><au>Maeng, Kiwan</au><au>Colin, Alexei</au><au>Yildirim, Kasim Sinan</au><au>Lucia, Brandon</au><au>Pawełczak, Przemysław</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Dynamic Task-based Intermittent Execution for Energy-harvesting Devices</atitle><jtitle>ACM transactions on sensor networks</jtitle><date>2020-02-29</date><risdate>2020</risdate><volume>16</volume><issue>1</issue><spage>1</spage><epage>24</epage><pages>1-24</pages><issn>1550-4859</issn><eissn>1550-4867</eissn><abstract>Energy-neutral Internet of Things requires freeing embedded devices from batteries and powering them from ambient energy. Ambient energy is, however, unpredictable and can only power a device intermittently. Therefore, the paradigm of intermittent execution is to save the program state into non-volatile memory frequently to preserve the execution progress. In task-based intermittent programming, the state is saved at task transition. Tasks are fixed at compile time and agnostic to energy conditions. Thus, the state may be saved either more often than necessary or not often enough for the program to progress and terminate. To address these challenges, we propose Coala, an adaptive and efficient task-based execution model. Coala progresses on a multi-task scale when energy permits and preserves the computation progress on a sub-task scale if necessary. Coala’s specialized memory virtualization mechanism ensures that power failures do not leave the program state in non-volatile memory inconsistent. Our evaluation on a real energy-harvesting platform not only shows that Coala reduces runtime by up to 54% as compared to a state-of-the-art system, but also it is able to progress where static systems fail.</abstract><doi>10.1145/3360285</doi><tpages>24</tpages><orcidid>https://orcid.org/0000-0001-8225-6410</orcidid><orcidid>https://orcid.org/0000-0003-4130-1099</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1550-4859 |
ispartof | ACM transactions on sensor networks, 2020-02, Vol.16 (1), p.1-24 |
issn | 1550-4859 1550-4867 |
language | eng |
recordid | cdi_crossref_primary_10_1145_3360285 |
source | ACM Digital Library Complete |
title | Dynamic Task-based Intermittent Execution for Energy-harvesting Devices |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T14%3A37%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Dynamic%20Task-based%20Intermittent%20Execution%20for%20Energy-harvesting%20Devices&rft.jtitle=ACM%20transactions%20on%20sensor%20networks&rft.au=Majid,%20Amjad%20Yousef&rft.date=2020-02-29&rft.volume=16&rft.issue=1&rft.spage=1&rft.epage=24&rft.pages=1-24&rft.issn=1550-4859&rft.eissn=1550-4867&rft_id=info:doi/10.1145/3360285&rft_dat=%3Ccrossref%3E10_1145_3360285%3C/crossref%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |