Unrolling Ternary Neural Networks

The computational complexity of neural networks for large-scale or real-time applications necessitates hardware acceleration. Most approaches assume that the network architecture and parameters are unknown at design time, permitting usage in a large number of applications. This article demonstrates,...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACM transactions on reconfigurable technology and systems 2019-11, Vol.12 (4), p.1-23
Hauptverfasser: Tridgell, Stephen, Kumm, Martin, Hardieck, Martin, Boland, David, Moss, Duncan, Zipf, Peter, Leong, Philip H. W.
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 23
container_issue 4
container_start_page 1
container_title ACM transactions on reconfigurable technology and systems
container_volume 12
creator Tridgell, Stephen
Kumm, Martin
Hardieck, Martin
Boland, David
Moss, Duncan
Zipf, Peter
Leong, Philip H. W.
description The computational complexity of neural networks for large-scale or real-time applications necessitates hardware acceleration. Most approaches assume that the network architecture and parameters are unknown at design time, permitting usage in a large number of applications. This article demonstrates, for the case where the neural network architecture and ternary weight values are known a priori , that extremely high throughput implementations of neural network inference can be made by customising the datapath and routing to remove unnecessary computations and data movement. This approach is ideally suited to FPGA implementations as a specialized implementation of a trained network improves efficiency while still retaining generality with the reconfigurability of an FPGA. A VGG-style network with ternary weights and fixed point activations is implemented for the CIFAR10 dataset on Amazon’s AWS F1 instance. This article demonstrates how to remove 90% of the operations in convolutional layers by exploiting sparsity and compile-time optimizations. The implementation in hardware achieves 90.9 ± 0.1% accuracy and 122k frames per second, with a latency of only 29µs, which is the fastest CNN inference implementation reported so far on an FPGA.
doi_str_mv 10.1145/3359983
format Article
fullrecord <record><control><sourceid>crossref</sourceid><recordid>TN_cdi_crossref_primary_10_1145_3359983</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1145_3359983</sourcerecordid><originalsourceid>FETCH-LOGICAL-c225t-b6c7564106e95e9add228ef9f1bfafd4781f1ee021d4cb1d300f3e8c9a6001373</originalsourceid><addsrcrecordid>eNo9j81KAzEURoNYsLbFV6grV1PvzU0yyVKKP4ViN-16yCQ3Uh1nJKmIb2_F4up8q49zhLhCWCAqfUuknbN0JsboyFS1QnX-v8FciMtSXgEMGavG4nrX56Hr9v3LfMu59_l7_syf2XdHHL6G_FamYpR8V3h24kTsHu63y6dqvXlcLe_WVZBSH6rWhFobhWDYaXY-RiktJ5ewTT5FVVtMyAwSowotRgJIxDY4bwCQapqIm7_fkIdSMqfmI-_fj0INQvNb1pzK6AdZsz8Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Unrolling Ternary Neural Networks</title><source>ACM Digital Library Complete</source><creator>Tridgell, Stephen ; Kumm, Martin ; Hardieck, Martin ; Boland, David ; Moss, Duncan ; Zipf, Peter ; Leong, Philip H. W.</creator><creatorcontrib>Tridgell, Stephen ; Kumm, Martin ; Hardieck, Martin ; Boland, David ; Moss, Duncan ; Zipf, Peter ; Leong, Philip H. W.</creatorcontrib><description>The computational complexity of neural networks for large-scale or real-time applications necessitates hardware acceleration. Most approaches assume that the network architecture and parameters are unknown at design time, permitting usage in a large number of applications. This article demonstrates, for the case where the neural network architecture and ternary weight values are known a priori , that extremely high throughput implementations of neural network inference can be made by customising the datapath and routing to remove unnecessary computations and data movement. This approach is ideally suited to FPGA implementations as a specialized implementation of a trained network improves efficiency while still retaining generality with the reconfigurability of an FPGA. A VGG-style network with ternary weights and fixed point activations is implemented for the CIFAR10 dataset on Amazon’s AWS F1 instance. This article demonstrates how to remove 90% of the operations in convolutional layers by exploiting sparsity and compile-time optimizations. The implementation in hardware achieves 90.9 ± 0.1% accuracy and 122k frames per second, with a latency of only 29µs, which is the fastest CNN inference implementation reported so far on an FPGA.</description><identifier>ISSN: 1936-7406</identifier><identifier>EISSN: 1936-7414</identifier><identifier>DOI: 10.1145/3359983</identifier><language>eng</language><ispartof>ACM transactions on reconfigurable technology and systems, 2019-11, Vol.12 (4), p.1-23</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c225t-b6c7564106e95e9add228ef9f1bfafd4781f1ee021d4cb1d300f3e8c9a6001373</citedby><cites>FETCH-LOGICAL-c225t-b6c7564106e95e9add228ef9f1bfafd4781f1ee021d4cb1d300f3e8c9a6001373</cites><orcidid>0000-0002-5884-2417</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids></links><search><creatorcontrib>Tridgell, Stephen</creatorcontrib><creatorcontrib>Kumm, Martin</creatorcontrib><creatorcontrib>Hardieck, Martin</creatorcontrib><creatorcontrib>Boland, David</creatorcontrib><creatorcontrib>Moss, Duncan</creatorcontrib><creatorcontrib>Zipf, Peter</creatorcontrib><creatorcontrib>Leong, Philip H. W.</creatorcontrib><title>Unrolling Ternary Neural Networks</title><title>ACM transactions on reconfigurable technology and systems</title><description>The computational complexity of neural networks for large-scale or real-time applications necessitates hardware acceleration. Most approaches assume that the network architecture and parameters are unknown at design time, permitting usage in a large number of applications. This article demonstrates, for the case where the neural network architecture and ternary weight values are known a priori , that extremely high throughput implementations of neural network inference can be made by customising the datapath and routing to remove unnecessary computations and data movement. This approach is ideally suited to FPGA implementations as a specialized implementation of a trained network improves efficiency while still retaining generality with the reconfigurability of an FPGA. A VGG-style network with ternary weights and fixed point activations is implemented for the CIFAR10 dataset on Amazon’s AWS F1 instance. This article demonstrates how to remove 90% of the operations in convolutional layers by exploiting sparsity and compile-time optimizations. The implementation in hardware achieves 90.9 ± 0.1% accuracy and 122k frames per second, with a latency of only 29µs, which is the fastest CNN inference implementation reported so far on an FPGA.</description><issn>1936-7406</issn><issn>1936-7414</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNo9j81KAzEURoNYsLbFV6grV1PvzU0yyVKKP4ViN-16yCQ3Uh1nJKmIb2_F4up8q49zhLhCWCAqfUuknbN0JsboyFS1QnX-v8FciMtSXgEMGavG4nrX56Hr9v3LfMu59_l7_syf2XdHHL6G_FamYpR8V3h24kTsHu63y6dqvXlcLe_WVZBSH6rWhFobhWDYaXY-RiktJ5ewTT5FVVtMyAwSowotRgJIxDY4bwCQapqIm7_fkIdSMqfmI-_fj0INQvNb1pzK6AdZsz8Q</recordid><startdate>20191101</startdate><enddate>20191101</enddate><creator>Tridgell, Stephen</creator><creator>Kumm, Martin</creator><creator>Hardieck, Martin</creator><creator>Boland, David</creator><creator>Moss, Duncan</creator><creator>Zipf, Peter</creator><creator>Leong, Philip H. W.</creator><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-5884-2417</orcidid></search><sort><creationdate>20191101</creationdate><title>Unrolling Ternary Neural Networks</title><author>Tridgell, Stephen ; Kumm, Martin ; Hardieck, Martin ; Boland, David ; Moss, Duncan ; Zipf, Peter ; Leong, Philip H. W.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c225t-b6c7564106e95e9add228ef9f1bfafd4781f1ee021d4cb1d300f3e8c9a6001373</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tridgell, Stephen</creatorcontrib><creatorcontrib>Kumm, Martin</creatorcontrib><creatorcontrib>Hardieck, Martin</creatorcontrib><creatorcontrib>Boland, David</creatorcontrib><creatorcontrib>Moss, Duncan</creatorcontrib><creatorcontrib>Zipf, Peter</creatorcontrib><creatorcontrib>Leong, Philip H. W.</creatorcontrib><collection>CrossRef</collection><jtitle>ACM transactions on reconfigurable technology and systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tridgell, Stephen</au><au>Kumm, Martin</au><au>Hardieck, Martin</au><au>Boland, David</au><au>Moss, Duncan</au><au>Zipf, Peter</au><au>Leong, Philip H. W.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Unrolling Ternary Neural Networks</atitle><jtitle>ACM transactions on reconfigurable technology and systems</jtitle><date>2019-11-01</date><risdate>2019</risdate><volume>12</volume><issue>4</issue><spage>1</spage><epage>23</epage><pages>1-23</pages><issn>1936-7406</issn><eissn>1936-7414</eissn><abstract>The computational complexity of neural networks for large-scale or real-time applications necessitates hardware acceleration. Most approaches assume that the network architecture and parameters are unknown at design time, permitting usage in a large number of applications. This article demonstrates, for the case where the neural network architecture and ternary weight values are known a priori , that extremely high throughput implementations of neural network inference can be made by customising the datapath and routing to remove unnecessary computations and data movement. This approach is ideally suited to FPGA implementations as a specialized implementation of a trained network improves efficiency while still retaining generality with the reconfigurability of an FPGA. A VGG-style network with ternary weights and fixed point activations is implemented for the CIFAR10 dataset on Amazon’s AWS F1 instance. This article demonstrates how to remove 90% of the operations in convolutional layers by exploiting sparsity and compile-time optimizations. The implementation in hardware achieves 90.9 ± 0.1% accuracy and 122k frames per second, with a latency of only 29µs, which is the fastest CNN inference implementation reported so far on an FPGA.</abstract><doi>10.1145/3359983</doi><tpages>23</tpages><orcidid>https://orcid.org/0000-0002-5884-2417</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1936-7406
ispartof ACM transactions on reconfigurable technology and systems, 2019-11, Vol.12 (4), p.1-23
issn 1936-7406
1936-7414
language eng
recordid cdi_crossref_primary_10_1145_3359983
source ACM Digital Library Complete
title Unrolling Ternary Neural Networks
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T00%3A24%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Unrolling%20Ternary%20Neural%20Networks&rft.jtitle=ACM%20transactions%20on%20reconfigurable%20technology%20and%20systems&rft.au=Tridgell,%20Stephen&rft.date=2019-11-01&rft.volume=12&rft.issue=4&rft.spage=1&rft.epage=23&rft.pages=1-23&rft.issn=1936-7406&rft.eissn=1936-7414&rft_id=info:doi/10.1145/3359983&rft_dat=%3Ccrossref%3E10_1145_3359983%3C/crossref%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true