Word Reordering for Translation into Korean Sign Language Using Syntactically-guided Classification

Machine translation aims to break the language barrier that prevents communication with others and increase access to information. Deaf people face huge language barriers in their daily lives, including access to digital and spoken information. There are very few digital resources for sign language...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACM transactions on Asian and low-resource language information processing 2020-03, Vol.19 (2), p.1-20
Hauptverfasser: Jung, Hun-Young, Lee, Jong-Hyeok, Min, Eunju
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 20
container_issue 2
container_start_page 1
container_title ACM transactions on Asian and low-resource language information processing
container_volume 19
creator Jung, Hun-Young
Lee, Jong-Hyeok
Min, Eunju
description Machine translation aims to break the language barrier that prevents communication with others and increase access to information. Deaf people face huge language barriers in their daily lives, including access to digital and spoken information. There are very few digital resources for sign language processing. In this article, we present a transfer-based machine translation system for translating Korean-to-Korean Sign Language (KSL) glosses, mainly composed of (1) dictionary-based lexical transfer and (2) a hybrid syntactic transfer based on a data-driven model. In particular, we formulate complicated word reordering problems in syntactic transfer as multi-class classification tasks and propose “syntactically guided” data-driven syntactic transfer. The core part of our study is a neural classification model for reordering order-important constituent pairs with a reordering task that is newly designed for Korean-to-KSL translation. The experiment results evaluated on news transcript data show that the proposed system achieves a BLEU score of 0.512 and a RIBES score of 0.425, significantly improving upon the baseline system performance.
doi_str_mv 10.1145/3357612
format Article
fullrecord <record><control><sourceid>crossref</sourceid><recordid>TN_cdi_crossref_primary_10_1145_3357612</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1145_3357612</sourcerecordid><originalsourceid>FETCH-LOGICAL-c225t-a8ef702f64037a34f0023a2a06dc6dc7d4b0e698c0bed7fd0a11a2132760fbf13</originalsourceid><addsrcrecordid>eNo1kFtLxDAQhYMouKyLfyFvPlUnSZtsH6V4WSwI7i4-lmkuJVJTSboP_fe2uMIwcxgOH4dDyC2De8by4kGIQknGL8iKC1VkuQJ--a9lWV6TTUpfAMByJSWwFdGfQzT0w87bRh866oZIDxFD6nH0Q6A-jAN9G6LFQPe-C7TG0J2ws_SYFv9-CiPq0Wvs-ynrTt5YQ6seU_Jufi6MG3LlsE92c75rcnx-OlSvWf3-sqse60xzXowZbq2b8zqZg1AocgfABXIEafQ8yuQtWFluNbTWKGcAGUPOBFcSXOuYWJO7P66OQ0rRuuYn-m-MU8OgWeppzvWIX_6eWDA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Word Reordering for Translation into Korean Sign Language Using Syntactically-guided Classification</title><source>ACM Digital Library</source><creator>Jung, Hun-Young ; Lee, Jong-Hyeok ; Min, Eunju</creator><creatorcontrib>Jung, Hun-Young ; Lee, Jong-Hyeok ; Min, Eunju</creatorcontrib><description>Machine translation aims to break the language barrier that prevents communication with others and increase access to information. Deaf people face huge language barriers in their daily lives, including access to digital and spoken information. There are very few digital resources for sign language processing. In this article, we present a transfer-based machine translation system for translating Korean-to-Korean Sign Language (KSL) glosses, mainly composed of (1) dictionary-based lexical transfer and (2) a hybrid syntactic transfer based on a data-driven model. In particular, we formulate complicated word reordering problems in syntactic transfer as multi-class classification tasks and propose “syntactically guided” data-driven syntactic transfer. The core part of our study is a neural classification model for reordering order-important constituent pairs with a reordering task that is newly designed for Korean-to-KSL translation. The experiment results evaluated on news transcript data show that the proposed system achieves a BLEU score of 0.512 and a RIBES score of 0.425, significantly improving upon the baseline system performance.</description><identifier>ISSN: 2375-4699</identifier><identifier>EISSN: 2375-4702</identifier><identifier>DOI: 10.1145/3357612</identifier><language>eng</language><ispartof>ACM transactions on Asian and low-resource language information processing, 2020-03, Vol.19 (2), p.1-20</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c225t-a8ef702f64037a34f0023a2a06dc6dc7d4b0e698c0bed7fd0a11a2132760fbf13</citedby><cites>FETCH-LOGICAL-c225t-a8ef702f64037a34f0023a2a06dc6dc7d4b0e698c0bed7fd0a11a2132760fbf13</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Jung, Hun-Young</creatorcontrib><creatorcontrib>Lee, Jong-Hyeok</creatorcontrib><creatorcontrib>Min, Eunju</creatorcontrib><title>Word Reordering for Translation into Korean Sign Language Using Syntactically-guided Classification</title><title>ACM transactions on Asian and low-resource language information processing</title><description>Machine translation aims to break the language barrier that prevents communication with others and increase access to information. Deaf people face huge language barriers in their daily lives, including access to digital and spoken information. There are very few digital resources for sign language processing. In this article, we present a transfer-based machine translation system for translating Korean-to-Korean Sign Language (KSL) glosses, mainly composed of (1) dictionary-based lexical transfer and (2) a hybrid syntactic transfer based on a data-driven model. In particular, we formulate complicated word reordering problems in syntactic transfer as multi-class classification tasks and propose “syntactically guided” data-driven syntactic transfer. The core part of our study is a neural classification model for reordering order-important constituent pairs with a reordering task that is newly designed for Korean-to-KSL translation. The experiment results evaluated on news transcript data show that the proposed system achieves a BLEU score of 0.512 and a RIBES score of 0.425, significantly improving upon the baseline system performance.</description><issn>2375-4699</issn><issn>2375-4702</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNo1kFtLxDAQhYMouKyLfyFvPlUnSZtsH6V4WSwI7i4-lmkuJVJTSboP_fe2uMIwcxgOH4dDyC2De8by4kGIQknGL8iKC1VkuQJ--a9lWV6TTUpfAMByJSWwFdGfQzT0w87bRh866oZIDxFD6nH0Q6A-jAN9G6LFQPe-C7TG0J2ws_SYFv9-CiPq0Wvs-ynrTt5YQ6seU_Jufi6MG3LlsE92c75rcnx-OlSvWf3-sqse60xzXowZbq2b8zqZg1AocgfABXIEafQ8yuQtWFluNbTWKGcAGUPOBFcSXOuYWJO7P66OQ0rRuuYn-m-MU8OgWeppzvWIX_6eWDA</recordid><startdate>20200331</startdate><enddate>20200331</enddate><creator>Jung, Hun-Young</creator><creator>Lee, Jong-Hyeok</creator><creator>Min, Eunju</creator><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20200331</creationdate><title>Word Reordering for Translation into Korean Sign Language Using Syntactically-guided Classification</title><author>Jung, Hun-Young ; Lee, Jong-Hyeok ; Min, Eunju</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c225t-a8ef702f64037a34f0023a2a06dc6dc7d4b0e698c0bed7fd0a11a2132760fbf13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jung, Hun-Young</creatorcontrib><creatorcontrib>Lee, Jong-Hyeok</creatorcontrib><creatorcontrib>Min, Eunju</creatorcontrib><collection>CrossRef</collection><jtitle>ACM transactions on Asian and low-resource language information processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jung, Hun-Young</au><au>Lee, Jong-Hyeok</au><au>Min, Eunju</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Word Reordering for Translation into Korean Sign Language Using Syntactically-guided Classification</atitle><jtitle>ACM transactions on Asian and low-resource language information processing</jtitle><date>2020-03-31</date><risdate>2020</risdate><volume>19</volume><issue>2</issue><spage>1</spage><epage>20</epage><pages>1-20</pages><issn>2375-4699</issn><eissn>2375-4702</eissn><abstract>Machine translation aims to break the language barrier that prevents communication with others and increase access to information. Deaf people face huge language barriers in their daily lives, including access to digital and spoken information. There are very few digital resources for sign language processing. In this article, we present a transfer-based machine translation system for translating Korean-to-Korean Sign Language (KSL) glosses, mainly composed of (1) dictionary-based lexical transfer and (2) a hybrid syntactic transfer based on a data-driven model. In particular, we formulate complicated word reordering problems in syntactic transfer as multi-class classification tasks and propose “syntactically guided” data-driven syntactic transfer. The core part of our study is a neural classification model for reordering order-important constituent pairs with a reordering task that is newly designed for Korean-to-KSL translation. The experiment results evaluated on news transcript data show that the proposed system achieves a BLEU score of 0.512 and a RIBES score of 0.425, significantly improving upon the baseline system performance.</abstract><doi>10.1145/3357612</doi><tpages>20</tpages></addata></record>
fulltext fulltext
identifier ISSN: 2375-4699
ispartof ACM transactions on Asian and low-resource language information processing, 2020-03, Vol.19 (2), p.1-20
issn 2375-4699
2375-4702
language eng
recordid cdi_crossref_primary_10_1145_3357612
source ACM Digital Library
title Word Reordering for Translation into Korean Sign Language Using Syntactically-guided Classification
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T14%3A25%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Word%20Reordering%20for%20Translation%20into%20Korean%20Sign%20Language%20Using%20Syntactically-guided%20Classification&rft.jtitle=ACM%20transactions%20on%20Asian%20and%20low-resource%20language%20information%20processing&rft.au=Jung,%20Hun-Young&rft.date=2020-03-31&rft.volume=19&rft.issue=2&rft.spage=1&rft.epage=20&rft.pages=1-20&rft.issn=2375-4699&rft.eissn=2375-4702&rft_id=info:doi/10.1145/3357612&rft_dat=%3Ccrossref%3E10_1145_3357612%3C/crossref%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true