RPM-Net: recurrent prediction of motion and parts from point cloud
We introduce RPM-Net, a deep learning-based approach which simultaneously infers movable parts and hallucinates their motions from a single, un-segmented, and possibly partial, 3D point cloud shape. RPM-Net is a novel Recurrent Neural Network (RNN), composed of an encoder-decoder pair with interleav...
Gespeichert in:
Veröffentlicht in: | ACM transactions on graphics 2019-11, Vol.38 (6), p.1-15 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 15 |
---|---|
container_issue | 6 |
container_start_page | 1 |
container_title | ACM transactions on graphics |
container_volume | 38 |
creator | Yan, Zihao Hu, Ruizhen Yan, Xingguang Chen, Luanmin Van Kaick, Oliver Zhang, Hao Huang, Hui |
description | We introduce RPM-Net, a deep learning-based approach which simultaneously infers
movable parts
and hallucinates their
motions
from a single, un-segmented, and possibly partial, 3D point cloud shape. RPM-Net is a novel Recurrent Neural Network (RNN), composed of an encoder-decoder pair with interleaved Long Short-Term Memory (LSTM) components, which together predict a temporal sequence of
pointwise displacements
for the input point cloud. At the same time, the displacements allow the network to learn movable parts, resulting in a motion-based shape segmentation. Recursive applications of RPM-Net on the obtained parts can predict finer-level part motions, resulting in a hierarchical object segmentation. Furthermore, we develop a separate network to estimate part mobilities, e.g., per-part motion parameters, from the segmented motion sequence. Both networks learn deep predictive models from a training set that exemplifies a variety of mobilities for diverse objects. We show results of simultaneous motion and part predictions from synthetic and real scans of 3D objects exhibiting a variety of part mobilities, possibly involving multiple movable parts. |
doi_str_mv | 10.1145/3355089.3356573 |
format | Article |
fullrecord | <record><control><sourceid>crossref</sourceid><recordid>TN_cdi_crossref_primary_10_1145_3355089_3356573</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1145_3355089_3356573</sourcerecordid><originalsourceid>FETCH-LOGICAL-c195t-5420d714c52cd638e23dd8f29b37a4eb5e910c1aaf23955cc1f9fae80e0f56d03</originalsourceid><addsrcrecordid>eNotz8tKQzEQgOGhWPRYXfsUaWcymVyWUrwU6gWp65DmAhVFOenGt1fxrP7dDx_AFeGSyMiKWQR9WP7WiuMZDCTilGPrT2BAx6iQkc7gvPc3RLTG2AFOX54f1GM9XsC8pfdeL6cu4PX2Zre-V9unu836eqsyBTkqMRqLI5NF52LZV82l-KbDnl0ydS81EGZKqWkOIjlTCy1VjxWb2IK8gNX_N4-fvY-1xa_x8JHG70gY_xxxcsTJwT9u6TfU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>RPM-Net: recurrent prediction of motion and parts from point cloud</title><source>ACM Digital Library Complete</source><creator>Yan, Zihao ; Hu, Ruizhen ; Yan, Xingguang ; Chen, Luanmin ; Van Kaick, Oliver ; Zhang, Hao ; Huang, Hui</creator><creatorcontrib>Yan, Zihao ; Hu, Ruizhen ; Yan, Xingguang ; Chen, Luanmin ; Van Kaick, Oliver ; Zhang, Hao ; Huang, Hui</creatorcontrib><description>We introduce RPM-Net, a deep learning-based approach which simultaneously infers
movable parts
and hallucinates their
motions
from a single, un-segmented, and possibly partial, 3D point cloud shape. RPM-Net is a novel Recurrent Neural Network (RNN), composed of an encoder-decoder pair with interleaved Long Short-Term Memory (LSTM) components, which together predict a temporal sequence of
pointwise displacements
for the input point cloud. At the same time, the displacements allow the network to learn movable parts, resulting in a motion-based shape segmentation. Recursive applications of RPM-Net on the obtained parts can predict finer-level part motions, resulting in a hierarchical object segmentation. Furthermore, we develop a separate network to estimate part mobilities, e.g., per-part motion parameters, from the segmented motion sequence. Both networks learn deep predictive models from a training set that exemplifies a variety of mobilities for diverse objects. We show results of simultaneous motion and part predictions from synthetic and real scans of 3D objects exhibiting a variety of part mobilities, possibly involving multiple movable parts.</description><identifier>ISSN: 0730-0301</identifier><identifier>EISSN: 1557-7368</identifier><identifier>DOI: 10.1145/3355089.3356573</identifier><language>eng</language><ispartof>ACM transactions on graphics, 2019-11, Vol.38 (6), p.1-15</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c195t-5420d714c52cd638e23dd8f29b37a4eb5e910c1aaf23955cc1f9fae80e0f56d03</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27922,27923</link.rule.ids></links><search><creatorcontrib>Yan, Zihao</creatorcontrib><creatorcontrib>Hu, Ruizhen</creatorcontrib><creatorcontrib>Yan, Xingguang</creatorcontrib><creatorcontrib>Chen, Luanmin</creatorcontrib><creatorcontrib>Van Kaick, Oliver</creatorcontrib><creatorcontrib>Zhang, Hao</creatorcontrib><creatorcontrib>Huang, Hui</creatorcontrib><title>RPM-Net: recurrent prediction of motion and parts from point cloud</title><title>ACM transactions on graphics</title><description>We introduce RPM-Net, a deep learning-based approach which simultaneously infers
movable parts
and hallucinates their
motions
from a single, un-segmented, and possibly partial, 3D point cloud shape. RPM-Net is a novel Recurrent Neural Network (RNN), composed of an encoder-decoder pair with interleaved Long Short-Term Memory (LSTM) components, which together predict a temporal sequence of
pointwise displacements
for the input point cloud. At the same time, the displacements allow the network to learn movable parts, resulting in a motion-based shape segmentation. Recursive applications of RPM-Net on the obtained parts can predict finer-level part motions, resulting in a hierarchical object segmentation. Furthermore, we develop a separate network to estimate part mobilities, e.g., per-part motion parameters, from the segmented motion sequence. Both networks learn deep predictive models from a training set that exemplifies a variety of mobilities for diverse objects. We show results of simultaneous motion and part predictions from synthetic and real scans of 3D objects exhibiting a variety of part mobilities, possibly involving multiple movable parts.</description><issn>0730-0301</issn><issn>1557-7368</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNotz8tKQzEQgOGhWPRYXfsUaWcymVyWUrwU6gWp65DmAhVFOenGt1fxrP7dDx_AFeGSyMiKWQR9WP7WiuMZDCTilGPrT2BAx6iQkc7gvPc3RLTG2AFOX54f1GM9XsC8pfdeL6cu4PX2Zre-V9unu836eqsyBTkqMRqLI5NF52LZV82l-KbDnl0ydS81EGZKqWkOIjlTCy1VjxWb2IK8gNX_N4-fvY-1xa_x8JHG70gY_xxxcsTJwT9u6TfU</recordid><startdate>20191101</startdate><enddate>20191101</enddate><creator>Yan, Zihao</creator><creator>Hu, Ruizhen</creator><creator>Yan, Xingguang</creator><creator>Chen, Luanmin</creator><creator>Van Kaick, Oliver</creator><creator>Zhang, Hao</creator><creator>Huang, Hui</creator><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20191101</creationdate><title>RPM-Net</title><author>Yan, Zihao ; Hu, Ruizhen ; Yan, Xingguang ; Chen, Luanmin ; Van Kaick, Oliver ; Zhang, Hao ; Huang, Hui</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c195t-5420d714c52cd638e23dd8f29b37a4eb5e910c1aaf23955cc1f9fae80e0f56d03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yan, Zihao</creatorcontrib><creatorcontrib>Hu, Ruizhen</creatorcontrib><creatorcontrib>Yan, Xingguang</creatorcontrib><creatorcontrib>Chen, Luanmin</creatorcontrib><creatorcontrib>Van Kaick, Oliver</creatorcontrib><creatorcontrib>Zhang, Hao</creatorcontrib><creatorcontrib>Huang, Hui</creatorcontrib><collection>CrossRef</collection><jtitle>ACM transactions on graphics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yan, Zihao</au><au>Hu, Ruizhen</au><au>Yan, Xingguang</au><au>Chen, Luanmin</au><au>Van Kaick, Oliver</au><au>Zhang, Hao</au><au>Huang, Hui</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>RPM-Net: recurrent prediction of motion and parts from point cloud</atitle><jtitle>ACM transactions on graphics</jtitle><date>2019-11-01</date><risdate>2019</risdate><volume>38</volume><issue>6</issue><spage>1</spage><epage>15</epage><pages>1-15</pages><issn>0730-0301</issn><eissn>1557-7368</eissn><abstract>We introduce RPM-Net, a deep learning-based approach which simultaneously infers
movable parts
and hallucinates their
motions
from a single, un-segmented, and possibly partial, 3D point cloud shape. RPM-Net is a novel Recurrent Neural Network (RNN), composed of an encoder-decoder pair with interleaved Long Short-Term Memory (LSTM) components, which together predict a temporal sequence of
pointwise displacements
for the input point cloud. At the same time, the displacements allow the network to learn movable parts, resulting in a motion-based shape segmentation. Recursive applications of RPM-Net on the obtained parts can predict finer-level part motions, resulting in a hierarchical object segmentation. Furthermore, we develop a separate network to estimate part mobilities, e.g., per-part motion parameters, from the segmented motion sequence. Both networks learn deep predictive models from a training set that exemplifies a variety of mobilities for diverse objects. We show results of simultaneous motion and part predictions from synthetic and real scans of 3D objects exhibiting a variety of part mobilities, possibly involving multiple movable parts.</abstract><doi>10.1145/3355089.3356573</doi><tpages>15</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0730-0301 |
ispartof | ACM transactions on graphics, 2019-11, Vol.38 (6), p.1-15 |
issn | 0730-0301 1557-7368 |
language | eng |
recordid | cdi_crossref_primary_10_1145_3355089_3356573 |
source | ACM Digital Library Complete |
title | RPM-Net: recurrent prediction of motion and parts from point cloud |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T04%3A17%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=RPM-Net:%20recurrent%20prediction%20of%20motion%20and%20parts%20from%20point%20cloud&rft.jtitle=ACM%20transactions%20on%20graphics&rft.au=Yan,%20Zihao&rft.date=2019-11-01&rft.volume=38&rft.issue=6&rft.spage=1&rft.epage=15&rft.pages=1-15&rft.issn=0730-0301&rft.eissn=1557-7368&rft_id=info:doi/10.1145/3355089.3356573&rft_dat=%3Ccrossref%3E10_1145_3355089_3356573%3C/crossref%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |